Enter a problem...
Linear Algebra Examples
[1101][1101]
Step 1
Step 1.1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(A−λI2)
Step 1.2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 1.3
Substitute the known values into p(λ)=determinant(A-λI2)p(λ)=determinant(A−λI2).
Step 1.3.1
Substitute [1101][1101] for AA.
p(λ)=determinant([1101]-λI2)p(λ)=determinant([1101]−λI2)
Step 1.3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([1101]-λ[1001])p(λ)=determinant([1101]−λ[1001])
p(λ)=determinant([1101]-λ[1001])p(λ)=determinant([1101]−λ[1001])
Step 1.4
Simplify.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply -λ−λ by each element of the matrix.
p(λ)=determinant([1101]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant([1101]+[−λ⋅1−λ⋅0−λ⋅0−λ⋅1])
Step 1.4.1.2
Simplify each element in the matrix.
Step 1.4.1.2.1
Multiply -1−1 by 11.
p(λ)=determinant([1101]+[-λ-λ⋅0-λ⋅0-λ⋅1])p(λ)=determinant([1101]+[−λ−λ⋅0−λ⋅0−λ⋅1])
Step 1.4.1.2.2
Multiply -λ⋅0−λ⋅0.
Step 1.4.1.2.2.1
Multiply 00 by -1−1.
p(λ)=determinant([1101]+[-λ0λ-λ⋅0-λ⋅1])p(λ)=determinant([1101]+[−λ0λ−λ⋅0−λ⋅1])
Step 1.4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([1101]+[-λ0-λ⋅0-λ⋅1])
p(λ)=determinant([1101]+[-λ0-λ⋅0-λ⋅1])
Step 1.4.1.2.3
Multiply -λ⋅0.
Step 1.4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([1101]+[-λ00λ-λ⋅1])
Step 1.4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([1101]+[-λ00-λ⋅1])
p(λ)=determinant([1101]+[-λ00-λ⋅1])
Step 1.4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([1101]+[-λ00-λ])
p(λ)=determinant([1101]+[-λ00-λ])
p(λ)=determinant([1101]+[-λ00-λ])
Step 1.4.2
Add the corresponding elements.
p(λ)=determinant[1-λ1+00+01-λ]
Step 1.4.3
Simplify each element.
Step 1.4.3.1
Add 1 and 0.
p(λ)=determinant[1-λ10+01-λ]
Step 1.4.3.2
Add 0 and 0.
p(λ)=determinant[1-λ101-λ]
p(λ)=determinant[1-λ101-λ]
p(λ)=determinant[1-λ101-λ]
Step 1.5
Find the determinant.
Step 1.5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(1-λ)(1-λ)+0⋅1
Step 1.5.2
Simplify the determinant.
Step 1.5.2.1
Simplify each term.
Step 1.5.2.1.1
Expand (1-λ)(1-λ) using the FOIL Method.
Step 1.5.2.1.1.1
Apply the distributive property.
p(λ)=1(1-λ)-λ(1-λ)+0⋅1
Step 1.5.2.1.1.2
Apply the distributive property.
p(λ)=1⋅1+1(-λ)-λ(1-λ)+0⋅1
Step 1.5.2.1.1.3
Apply the distributive property.
p(λ)=1⋅1+1(-λ)-λ⋅1-λ(-λ)+0⋅1
p(λ)=1⋅1+1(-λ)-λ⋅1-λ(-λ)+0⋅1
Step 1.5.2.1.2
Simplify and combine like terms.
Step 1.5.2.1.2.1
Simplify each term.
Step 1.5.2.1.2.1.1
Multiply 1 by 1.
p(λ)=1+1(-λ)-λ⋅1-λ(-λ)+0⋅1
Step 1.5.2.1.2.1.2
Multiply -λ by 1.
p(λ)=1-λ-λ⋅1-λ(-λ)+0⋅1
Step 1.5.2.1.2.1.3
Multiply -1 by 1.
p(λ)=1-λ-λ-λ(-λ)+0⋅1
Step 1.5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=1-λ-λ-1⋅-1λ⋅λ+0⋅1
Step 1.5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 1.5.2.1.2.1.5.1
Move λ.
p(λ)=1-λ-λ-1⋅-1(λ⋅λ)+0⋅1
Step 1.5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=1-λ-λ-1⋅-1λ2+0⋅1
p(λ)=1-λ-λ-1⋅-1λ2+0⋅1
Step 1.5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=1-λ-λ+1λ2+0⋅1
Step 1.5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=1-λ-λ+λ2+0⋅1
p(λ)=1-λ-λ+λ2+0⋅1
Step 1.5.2.1.2.2
Subtract λ from -λ.
p(λ)=1-2λ+λ2+0⋅1
p(λ)=1-2λ+λ2+0⋅1
Step 1.5.2.1.3
Multiply 0 by 1.
p(λ)=1-2λ+λ2+0
p(λ)=1-2λ+λ2+0
Step 1.5.2.2
Add 1-2λ+λ2 and 0.
p(λ)=1-2λ+λ2
Step 1.5.2.3
Move 1.
p(λ)=-2λ+λ2+1
Step 1.5.2.4
Reorder -2λ and λ2.
p(λ)=λ2-2λ+1
p(λ)=λ2-2λ+1
p(λ)=λ2-2λ+1
Step 1.6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-2λ+1=0
Step 1.7
Solve for λ.
Step 1.7.1
Factor using the perfect square rule.
Step 1.7.1.1
Rewrite 1 as 12.
λ2-2λ+12=0
Step 1.7.1.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
2λ=2⋅λ⋅1
Step 1.7.1.3
Rewrite the polynomial.
λ2-2⋅λ⋅1+12=0
Step 1.7.1.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=λ and b=1.
(λ-1)2=0
(λ-1)2=0
Step 1.7.2
Set the λ-1 equal to 0.
λ-1=0
Step 1.7.3
Add 1 to both sides of the equation.
λ=1
λ=1
λ=1
Step 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where N is the null space and I is the identity matrix.
εA=N(A-λI2)
Step 3
Step 3.1
Substitute the known values into the formula.
N([1101]-[1001])
Step 3.2
Simplify.
Step 3.2.1
Subtract the corresponding elements.
[1-11-00-01-1]
Step 3.2.2
Simplify each element.
Step 3.2.2.1
Subtract 1 from 1.
[01-00-01-1]
Step 3.2.2.2
Subtract 0 from 1.
[010-01-1]
Step 3.2.2.3
Subtract 0 from 0.
[0101-1]
Step 3.2.2.4
Subtract 1 from 1.
[0100]
[0100]
[0100]
Step 3.3
Find the null space when λ=1.
Step 3.3.1
Write as an augmented matrix for Ax=0.
[010000]
Step 3.3.2
Use the result matrix to declare the final solution to the system of equations.
y=0
0=0
Step 3.3.3
Write a solution vector by solving in terms of the free variables in each row.
[xy]=[x0]
Step 3.3.4
Write the solution as a linear combination of vectors.
[xy]=x[10]
Step 3.3.5
Write as a solution set.
{x[10]|x∈R}
Step 3.3.6
The solution is the set of vectors created from the free variables of the system.
{[10]}
{[10]}
{[10]}
Step 4
The eigenspace of A is the list of the vector space for each eigenvalue.
{[10]}