Enter a problem...
Linear Algebra Examples
[4-1i4-2i2+2i3-3i]⎡⎢
⎢
⎢
⎢⎣4−1i4−2i2+2i3−3i⎤⎥
⎥
⎥
⎥⎦
Step 1
The norm is the square root of the sum of squares of each element in the vector.
√|4-1i|2+|4-2i|2+|2+2i|2+|3-3i|2√|4−1i|2+|4−2i|2+|2+2i|2+|3−3i|2
Step 2
Step 2.1
Rewrite -1i−1i as -i−i.
√|4-i|2+|4-2i|2+|2+2i|2+|3-3i|2√|4−i|2+|4−2i|2+|2+2i|2+|3−3i|2
Step 2.2
Use the formula |a+bi|=√a2+b2|a+bi|=√a2+b2 to find the magnitude.
√√42+(-1)22+|4-2i|2+|2+2i|2+|3-3i|2√√42+(−1)22+|4−2i|2+|2+2i|2+|3−3i|2
Step 2.3
Raise 44 to the power of 22.
√√16+(-1)22+|4-2i|2+|2+2i|2+|3-3i|2√√16+(−1)22+|4−2i|2+|2+2i|2+|3−3i|2
Step 2.4
Raise -1−1 to the power of 22.
√√16+12+|4-2i|2+|2+2i|2+|3-3i|2√√16+12+|4−2i|2+|2+2i|2+|3−3i|2
Step 2.5
Add 1616 and 11.
√√172+|4-2i|2+|2+2i|2+|3-3i|2√√172+|4−2i|2+|2+2i|2+|3−3i|2
Step 2.6
Rewrite √172√172 as 1717.
Step 2.6.1
Use n√ax=axnn√ax=axn to rewrite √17√17 as 17121712.
√(1712)2+|4-2i|2+|2+2i|2+|3-3i|2√(1712)2+|4−2i|2+|2+2i|2+|3−3i|2
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√1712⋅2+|4-2i|2+|2+2i|2+|3-3i|2√1712⋅2+|4−2i|2+|2+2i|2+|3−3i|2
Step 2.6.3
Combine 1212 and 22.
√1722+|4-2i|2+|2+2i|2+|3-3i|2√1722+|4−2i|2+|2+2i|2+|3−3i|2
Step 2.6.4
Cancel the common factor of 2.
Step 2.6.4.1
Cancel the common factor.
√1722+|4-2i|2+|2+2i|2+|3-3i|2
Step 2.6.4.2
Rewrite the expression.
√171+|4-2i|2+|2+2i|2+|3-3i|2
√171+|4-2i|2+|2+2i|2+|3-3i|2
Step 2.6.5
Evaluate the exponent.
√17+|4-2i|2+|2+2i|2+|3-3i|2
√17+|4-2i|2+|2+2i|2+|3-3i|2
Step 2.7
Use the formula |a+bi|=√a2+b2 to find the magnitude.
√17+√42+(-2)22+|2+2i|2+|3-3i|2
Step 2.8
Raise 4 to the power of 2.
√17+√16+(-2)22+|2+2i|2+|3-3i|2
Step 2.9
Raise -2 to the power of 2.
√17+√16+42+|2+2i|2+|3-3i|2
Step 2.10
Add 16 and 4.
√17+√202+|2+2i|2+|3-3i|2
Step 2.11
Rewrite 20 as 22⋅5.
Step 2.11.1
Factor 4 out of 20.
√17+√4(5)2+|2+2i|2+|3-3i|2
Step 2.11.2
Rewrite 4 as 22.
√17+√22⋅52+|2+2i|2+|3-3i|2
√17+√22⋅52+|2+2i|2+|3-3i|2
Step 2.12
Pull terms out from under the radical.
√17+(2√5)2+|2+2i|2+|3-3i|2
Step 2.13
Apply the product rule to 2√5.
√17+22√52+|2+2i|2+|3-3i|2
Step 2.14
Raise 2 to the power of 2.
√17+4√52+|2+2i|2+|3-3i|2
Step 2.15
Rewrite √52 as 5.
Step 2.15.1
Use n√ax=axn to rewrite √5 as 512.
√17+4(512)2+|2+2i|2+|3-3i|2
Step 2.15.2
Apply the power rule and multiply exponents, (am)n=amn.
√17+4⋅512⋅2+|2+2i|2+|3-3i|2
Step 2.15.3
Combine 12 and 2.
√17+4⋅522+|2+2i|2+|3-3i|2
Step 2.15.4
Cancel the common factor of 2.
Step 2.15.4.1
Cancel the common factor.
√17+4⋅522+|2+2i|2+|3-3i|2
Step 2.15.4.2
Rewrite the expression.
√17+4⋅51+|2+2i|2+|3-3i|2
√17+4⋅51+|2+2i|2+|3-3i|2
Step 2.15.5
Evaluate the exponent.
√17+4⋅5+|2+2i|2+|3-3i|2
√17+4⋅5+|2+2i|2+|3-3i|2
Step 2.16
Multiply 4 by 5.
√17+20+|2+2i|2+|3-3i|2
Step 2.17
Use the formula |a+bi|=√a2+b2 to find the magnitude.
√17+20+√22+222+|3-3i|2
Step 2.18
Raise 2 to the power of 2.
√17+20+√4+222+|3-3i|2
Step 2.19
Raise 2 to the power of 2.
√17+20+√4+42+|3-3i|2
Step 2.20
Add 4 and 4.
√17+20+√82+|3-3i|2
Step 2.21
Rewrite 8 as 22⋅2.
Step 2.21.1
Factor 4 out of 8.
√17+20+√4(2)2+|3-3i|2
Step 2.21.2
Rewrite 4 as 22.
√17+20+√22⋅22+|3-3i|2
√17+20+√22⋅22+|3-3i|2
Step 2.22
Pull terms out from under the radical.
√17+20+(2√2)2+|3-3i|2
Step 2.23
Apply the product rule to 2√2.
√17+20+22√22+|3-3i|2
Step 2.24
Raise 2 to the power of 2.
√17+20+4√22+|3-3i|2
Step 2.25
Rewrite √22 as 2.
Step 2.25.1
Use n√ax=axn to rewrite √2 as 212.
√17+20+4(212)2+|3-3i|2
Step 2.25.2
Apply the power rule and multiply exponents, (am)n=amn.
√17+20+4⋅212⋅2+|3-3i|2
Step 2.25.3
Combine 12 and 2.
√17+20+4⋅222+|3-3i|2
Step 2.25.4
Cancel the common factor of 2.
Step 2.25.4.1
Cancel the common factor.
√17+20+4⋅222+|3-3i|2
Step 2.25.4.2
Rewrite the expression.
√17+20+4⋅21+|3-3i|2
√17+20+4⋅21+|3-3i|2
Step 2.25.5
Evaluate the exponent.
√17+20+4⋅2+|3-3i|2
√17+20+4⋅2+|3-3i|2
Step 2.26
Multiply 4 by 2.
√17+20+8+|3-3i|2
Step 2.27
Use the formula |a+bi|=√a2+b2 to find the magnitude.
√17+20+8+√32+(-3)22
Step 2.28
Raise 3 to the power of 2.
√17+20+8+√9+(-3)22
Step 2.29
Raise -3 to the power of 2.
√17+20+8+√9+92
Step 2.30
Add 9 and 9.
√17+20+8+√182
Step 2.31
Rewrite 18 as 32⋅2.
Step 2.31.1
Factor 9 out of 18.
√17+20+8+√9(2)2
Step 2.31.2
Rewrite 9 as 32.
√17+20+8+√32⋅22
√17+20+8+√32⋅22
Step 2.32
Pull terms out from under the radical.
√17+20+8+(3√2)2
Step 2.33
Apply the product rule to 3√2.
√17+20+8+32√22
Step 2.34
Raise 3 to the power of 2.
√17+20+8+9√22
Step 2.35
Rewrite √22 as 2.
Step 2.35.1
Use n√ax=axn to rewrite √2 as 212.
√17+20+8+9(212)2
Step 2.35.2
Apply the power rule and multiply exponents, (am)n=amn.
√17+20+8+9⋅212⋅2
Step 2.35.3
Combine 12 and 2.
√17+20+8+9⋅222
Step 2.35.4
Cancel the common factor of 2.
Step 2.35.4.1
Cancel the common factor.
√17+20+8+9⋅222
Step 2.35.4.2
Rewrite the expression.
√17+20+8+9⋅21
√17+20+8+9⋅21
Step 2.35.5
Evaluate the exponent.
√17+20+8+9⋅2
√17+20+8+9⋅2
Step 2.36
Multiply 9 by 2.
√17+20+8+18
Step 2.37
Add 17 and 20.
√37+8+18
Step 2.38
Add 37 and 8.
√45+18
Step 2.39
Add 45 and 18.
√63
Step 2.40
Rewrite 63 as 32⋅7.
Step 2.40.1
Factor 9 out of 63.
√9(7)
Step 2.40.2
Rewrite 9 as 32.
√32⋅7
√32⋅7
Step 2.41
Pull terms out from under the radical.
3√7
3√7
Step 3
The result can be shown in multiple forms.
Exact Form:
3√7
Decimal Form:
7.93725393…