Enter a problem...
Linear Algebra Examples
-7y2+zy-x=0−7y2+zy−x=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=-7a=−7, b=zb=z, and c=-xc=−x into the quadratic formula and solve for yy.
-z±√z2-4⋅(-7⋅(-x))2⋅-7−z±√z2−4⋅(−7⋅(−x))2⋅−7
Step 3
Step 3.1
Multiply -4⋅-7⋅-1−4⋅−7⋅−1.
Step 3.1.1
Multiply -4−4 by -7−7.
y=-z±√z2+28⋅(-1x)2⋅-7y=−z±√z2+28⋅(−1x)2⋅−7
Step 3.1.2
Multiply 2828 by -1−1.
y=-z±√z2-28x2⋅-7y=−z±√z2−28x2⋅−7
y=-z±√z2-28x2⋅-7y=−z±√z2−28x2⋅−7
Step 3.2
Multiply 22 by -7−7.
y=-z±√z2-28x-14y=−z±√z2−28x−14
Step 3.3
Simplify -z±√z2-28x-14−z±√z2−28x−14.
y=z±√z2-28x14y=z±√z2−28x14
y=z±√z2-28x14y=z±√z2−28x14
Step 4
Step 4.1
Multiply -4⋅-7⋅-1−4⋅−7⋅−1.
Step 4.1.1
Multiply -4−4 by -7−7.
y=-z±√z2+28⋅(-1x)2⋅-7y=−z±√z2+28⋅(−1x)2⋅−7
Step 4.1.2
Multiply 2828 by -1−1.
y=-z±√z2-28x2⋅-7y=−z±√z2−28x2⋅−7
y=-z±√z2-28x2⋅-7y=−z±√z2−28x2⋅−7
Step 4.2
Multiply 22 by -7−7.
y=-z±√z2-28x-14y=−z±√z2−28x−14
Step 4.3
Simplify -z±√z2-28x-14−z±√z2−28x−14.
y=z±√z2-28x14y=z±√z2−28x14
Step 4.4
Change the ±± to ++.
y=z+√z2-28x14y=z+√z2−28x14
y=z+√z2-28x14y=z+√z2−28x14
Step 5
Step 5.1
Multiply -4⋅-7⋅-1−4⋅−7⋅−1.
Step 5.1.1
Multiply -4−4 by -7−7.
y=-z±√z2+28⋅(-1x)2⋅-7y=−z±√z2+28⋅(−1x)2⋅−7
Step 5.1.2
Multiply 2828 by -1−1.
y=-z±√z2-28x2⋅-7y=−z±√z2−28x2⋅−7
y=-z±√z2-28x2⋅-7y=−z±√z2−28x2⋅−7
Step 5.2
Multiply 22 by -7−7.
y=-z±√z2-28x-14y=−z±√z2−28x−14
Step 5.3
Simplify -z±√z2-28x-14−z±√z2−28x−14.
y=z±√z2-28x14y=z±√z2−28x14
Step 5.4
Change the ±± to -−.
y=z-√z2-28x14y=z−√z2−28x14
y=z-√z2-28x14y=z−√z2−28x14
Step 6
The final answer is the combination of both solutions.
y=z+√z2-28x14y=z+√z2−28x14
y=z-√z2-28x14y=z−√z2−28x14
Step 7
Set the radicand in √z2-28x√z2−28x greater than or equal to 00 to find where the expression is defined.
z2-28x≥0z2−28x≥0
Step 8
Step 8.1
Add 28x28x to both sides of the inequality.
z2≥28xz2≥28x
Step 8.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
√z2≥√28x√z2≥√28x
Step 8.3
Simplify the equation.
Step 8.3.1
Simplify the left side.
Step 8.3.1.1
Pull terms out from under the radical.
|z|≥√28x|z|≥√28x
|z|≥√28x|z|≥√28x
Step 8.3.2
Simplify the right side.
Step 8.3.2.1
Simplify √28x√28x.
Step 8.3.2.1.1
Rewrite 28x28x as 22⋅(7x)22⋅(7x).
Step 8.3.2.1.1.1
Factor 44 out of 2828.
|z|≥√4(7)x|z|≥√4(7)x
Step 8.3.2.1.1.2
Rewrite 44 as 2222.
|z|≥√22⋅7x|z|≥√22⋅7x
Step 8.3.2.1.1.3
Add parentheses.
|z|≥√22⋅(7x)|z|≥√22⋅(7x)
|z|≥√22⋅(7x)|z|≥√22⋅(7x)
Step 8.3.2.1.2
Pull terms out from under the radical.
|z|≥|2|√7x|z|≥|2|√7x
Step 8.3.2.1.3
The absolute value is the distance between a number and zero. The distance between 00 and 22 is 22.
|z|≥2√7x|z|≥2√7x
|z|≥2√7x|z|≥2√7x
|z|≥2√7x|z|≥2√7x
|z|≥2√7x|z|≥2√7x
Step 8.4
Write |z|≥2√7x|z|≥2√7x as a piecewise.
Step 8.4.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
z≥0z≥0
Step 8.4.2
In the piece where zz is non-negative, remove the absolute value.
z≥2√7xz≥2√7x
Step 8.4.3
Find the domain of z≥2√7xz≥2√7x and find the intersection with z≥0z≥0.
Step 8.4.3.1
Find the domain of z≥2√7xz≥2√7x.
Step 8.4.3.1.1
Set the radicand in √7x√7x greater than or equal to 00 to find where the expression is defined.
7x≥07x≥0
Step 8.4.3.1.2
Divide each term in 7x≥07x≥0 by 77 and simplify.
Step 8.4.3.1.2.1
Divide each term in 7x≥07x≥0 by 77.
7x7≥077x7≥07
Step 8.4.3.1.2.2
Simplify the left side.
Step 8.4.3.1.2.2.1
Cancel the common factor of 77.
Step 8.4.3.1.2.2.1.1
Cancel the common factor.
7x7≥077x7≥07
Step 8.4.3.1.2.2.1.2
Divide xx by 11.
x≥07x≥07
x≥07x≥07
x≥07x≥07
Step 8.4.3.1.2.3
Simplify the right side.
Step 8.4.3.1.2.3.1
Divide 00 by 77.
x≥0x≥0
x≥0x≥0
x≥0x≥0
Step 8.4.3.1.3
The domain is all values of zz that make the expression defined.
[0,∞)[0,∞)
[0,∞)[0,∞)
Step 8.4.3.2
Find the intersection of z≥0z≥0 and [0,∞)[0,∞).
z≥0z≥0
z≥0z≥0
Step 8.4.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
z<0z<0
Step 8.4.5
In the piece where zz is negative, remove the absolute value and multiply by -1−1.
-z≥2√7x−z≥2√7x
Step 8.4.6
Find the domain of -z≥2√7x−z≥2√7x and find the intersection with z<0z<0.
Step 8.4.6.1
Find the domain of -z≥2√7x−z≥2√7x.
Step 8.4.6.1.1
Set the radicand in √7x√7x greater than or equal to 00 to find where the expression is defined.
7x≥07x≥0
Step 8.4.6.1.2
Divide each term in 7x≥07x≥0 by 77 and simplify.
Step 8.4.6.1.2.1
Divide each term in 7x≥07x≥0 by 77.
7x7≥077x7≥07
Step 8.4.6.1.2.2
Simplify the left side.
Step 8.4.6.1.2.2.1
Cancel the common factor of 77.
Step 8.4.6.1.2.2.1.1
Cancel the common factor.
7x7≥077x7≥07
Step 8.4.6.1.2.2.1.2
Divide xx by 11.
x≥07x≥07
x≥07x≥07
x≥07x≥07
Step 8.4.6.1.2.3
Simplify the right side.
Step 8.4.6.1.2.3.1
Divide 00 by 77.
x≥0x≥0
x≥0x≥0
x≥0x≥0
Step 8.4.6.1.3
The domain is all values of zz that make the expression defined.
[0,∞)[0,∞)
[0,∞)[0,∞)
Step 8.4.6.2
Find the intersection of z<0z<0 and [0,∞)[0,∞).
No solutionNo solution
No solutionNo solution
Step 8.4.7
Write as a piecewise.
{z≥2√7xz≥0{z≥2√7xz≥0
{z≥2√7xz≥0{z≥2√7xz≥0
Step 8.5
Find the intersection of z≥2√7xz≥2√7x and z≥0z≥0.
z≥2√7xz≥2√7x and z≥0z≥0
Step 8.6
Find the union of the solutions.
z≥No(Maximum)z≥No(Maximum)
z≥No(Maximum)z≥No(Maximum)
Step 9
The domain is all real numbers.
Interval Notation:
(-∞,∞)(−∞,∞)
Set-Builder Notation:
{z|z∈ℝ}
Step 10