Linear Algebra Examples

Find the Domain -7y^2+zy-x=0
-7y2+zy-x=07y2+zyx=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=-7a=7, b=zb=z, and c=-xc=x into the quadratic formula and solve for yy.
-z±z2-4(-7(-x))2-7z±z24(7(x))27
Step 3
Simplify.
Tap for more steps...
Step 3.1
Multiply -4-7-1471.
Tap for more steps...
Step 3.1.1
Multiply -44 by -77.
y=-z±z2+28(-1x)2-7y=z±z2+28(1x)27
Step 3.1.2
Multiply 2828 by -11.
y=-z±z2-28x2-7y=z±z228x27
y=-z±z2-28x2-7y=z±z228x27
Step 3.2
Multiply 22 by -77.
y=-z±z2-28x-14y=z±z228x14
Step 3.3
Simplify -z±z2-28x-14z±z228x14.
y=z±z2-28x14y=z±z228x14
y=z±z2-28x14y=z±z228x14
Step 4
Simplify the expression to solve for the ++ portion of the ±±.
Tap for more steps...
Step 4.1
Multiply -4-7-1471.
Tap for more steps...
Step 4.1.1
Multiply -44 by -77.
y=-z±z2+28(-1x)2-7y=z±z2+28(1x)27
Step 4.1.2
Multiply 2828 by -11.
y=-z±z2-28x2-7y=z±z228x27
y=-z±z2-28x2-7y=z±z228x27
Step 4.2
Multiply 22 by -77.
y=-z±z2-28x-14y=z±z228x14
Step 4.3
Simplify -z±z2-28x-14z±z228x14.
y=z±z2-28x14y=z±z228x14
Step 4.4
Change the ±± to ++.
y=z+z2-28x14y=z+z228x14
y=z+z2-28x14y=z+z228x14
Step 5
Simplify the expression to solve for the - portion of the ±±.
Tap for more steps...
Step 5.1
Multiply -4-7-1471.
Tap for more steps...
Step 5.1.1
Multiply -44 by -77.
y=-z±z2+28(-1x)2-7y=z±z2+28(1x)27
Step 5.1.2
Multiply 2828 by -11.
y=-z±z2-28x2-7y=z±z228x27
y=-z±z2-28x2-7y=z±z228x27
Step 5.2
Multiply 22 by -77.
y=-z±z2-28x-14y=z±z228x14
Step 5.3
Simplify -z±z2-28x-14z±z228x14.
y=z±z2-28x14y=z±z228x14
Step 5.4
Change the ±± to -.
y=z-z2-28x14y=zz228x14
y=z-z2-28x14y=zz228x14
Step 6
The final answer is the combination of both solutions.
y=z+z2-28x14y=z+z228x14
y=z-z2-28x14y=zz228x14
Step 7
Set the radicand in z2-28xz228x greater than or equal to 00 to find where the expression is defined.
z2-28x0z228x0
Step 8
Solve for zz.
Tap for more steps...
Step 8.1
Add 28x28x to both sides of the inequality.
z228xz228x
Step 8.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
z228xz228x
Step 8.3
Simplify the equation.
Tap for more steps...
Step 8.3.1
Simplify the left side.
Tap for more steps...
Step 8.3.1.1
Pull terms out from under the radical.
|z|28x|z|28x
|z|28x|z|28x
Step 8.3.2
Simplify the right side.
Tap for more steps...
Step 8.3.2.1
Simplify 28x28x.
Tap for more steps...
Step 8.3.2.1.1
Rewrite 28x28x as 22(7x)22(7x).
Tap for more steps...
Step 8.3.2.1.1.1
Factor 44 out of 2828.
|z|4(7)x|z|4(7)x
Step 8.3.2.1.1.2
Rewrite 44 as 2222.
|z|227x|z|227x
Step 8.3.2.1.1.3
Add parentheses.
|z|22(7x)|z|22(7x)
|z|22(7x)|z|22(7x)
Step 8.3.2.1.2
Pull terms out from under the radical.
|z||2|7x|z||2|7x
Step 8.3.2.1.3
The absolute value is the distance between a number and zero. The distance between 00 and 22 is 22.
|z|27x|z|27x
|z|27x|z|27x
|z|27x|z|27x
|z|27x|z|27x
Step 8.4
Write |z|27x|z|27x as a piecewise.
Tap for more steps...
Step 8.4.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
z0z0
Step 8.4.2
In the piece where zz is non-negative, remove the absolute value.
z27xz27x
Step 8.4.3
Find the domain of z27xz27x and find the intersection with z0z0.
Tap for more steps...
Step 8.4.3.1
Find the domain of z27xz27x.
Tap for more steps...
Step 8.4.3.1.1
Set the radicand in 7x7x greater than or equal to 00 to find where the expression is defined.
7x07x0
Step 8.4.3.1.2
Divide each term in 7x07x0 by 77 and simplify.
Tap for more steps...
Step 8.4.3.1.2.1
Divide each term in 7x07x0 by 77.
7x7077x707
Step 8.4.3.1.2.2
Simplify the left side.
Tap for more steps...
Step 8.4.3.1.2.2.1
Cancel the common factor of 77.
Tap for more steps...
Step 8.4.3.1.2.2.1.1
Cancel the common factor.
7x7077x707
Step 8.4.3.1.2.2.1.2
Divide xx by 11.
x07x07
x07x07
x07x07
Step 8.4.3.1.2.3
Simplify the right side.
Tap for more steps...
Step 8.4.3.1.2.3.1
Divide 00 by 77.
x0x0
x0x0
x0x0
Step 8.4.3.1.3
The domain is all values of zz that make the expression defined.
[0,)[0,)
[0,)[0,)
Step 8.4.3.2
Find the intersection of z0z0 and [0,)[0,).
z0z0
z0z0
Step 8.4.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
z<0z<0
Step 8.4.5
In the piece where zz is negative, remove the absolute value and multiply by -11.
-z27xz27x
Step 8.4.6
Find the domain of -z27xz27x and find the intersection with z<0z<0.
Tap for more steps...
Step 8.4.6.1
Find the domain of -z27xz27x.
Tap for more steps...
Step 8.4.6.1.1
Set the radicand in 7x7x greater than or equal to 00 to find where the expression is defined.
7x07x0
Step 8.4.6.1.2
Divide each term in 7x07x0 by 77 and simplify.
Tap for more steps...
Step 8.4.6.1.2.1
Divide each term in 7x07x0 by 77.
7x7077x707
Step 8.4.6.1.2.2
Simplify the left side.
Tap for more steps...
Step 8.4.6.1.2.2.1
Cancel the common factor of 77.
Tap for more steps...
Step 8.4.6.1.2.2.1.1
Cancel the common factor.
7x7077x707
Step 8.4.6.1.2.2.1.2
Divide xx by 11.
x07x07
x07x07
x07x07
Step 8.4.6.1.2.3
Simplify the right side.
Tap for more steps...
Step 8.4.6.1.2.3.1
Divide 00 by 77.
x0x0
x0x0
x0x0
Step 8.4.6.1.3
The domain is all values of zz that make the expression defined.
[0,)[0,)
[0,)[0,)
Step 8.4.6.2
Find the intersection of z<0z<0 and [0,)[0,).
No solutionNo solution
No solutionNo solution
Step 8.4.7
Write as a piecewise.
{z27xz0{z27xz0
{z27xz0{z27xz0
Step 8.5
Find the intersection of z27xz27x and z0z0.
z27xz27x and z0z0
Step 8.6
Find the union of the solutions.
zNo(Maximum)zNo(Maximum)
zNo(Maximum)zNo(Maximum)
Step 9
The domain is all real numbers.
Interval Notation:
(-,)(,)
Set-Builder Notation:
{z|z}
Step 10
 [x2  12  π  xdx ]