Linear Algebra Examples

Find the Domain d=v(x^2-x+(y^2-y))*22
d=v(x2-x+(y2-y))22
Step 1
Rewrite the equation as v(x2-x+y2-y)22=d.
v(x2-x+y2-y)22=d
Step 2
Simplify v(x2-x+y2-y)22.
Tap for more steps...
Step 2.1
Apply the distributive property.
(vx2+v(-x)+vy2+v(-y))22=d
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Rewrite using the commutative property of multiplication.
(vx2-vx+vy2+v(-y))22=d
Step 2.2.2
Rewrite using the commutative property of multiplication.
(vx2-vx+vy2-vy)22=d
(vx2-vx+vy2-vy)22=d
Step 2.3
Apply the distributive property.
vx222-vx22+vy222-vy22=d
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Move 22 to the left of vx2.
22(vx2)-vx22+vy222-vy22=d
Step 2.4.2
Multiply 22 by -1.
22(vx2)-22vx+vy222-vy22=d
Step 2.4.3
Move 22 to the left of vy2.
22(vx2)-22vx+22(vy2)-vy22=d
Step 2.4.4
Multiply 22 by -1.
22(vx2)-22vx+22(vy2)-22vy=d
22(vx2)-22vx+22(vy2)-22vy=d
Step 2.5
Remove parentheses.
22vx2-22vx+22vy2-22vy=d
22vx2-22vx+22vy2-22vy=d
Step 3
Subtract d from both sides of the equation.
22vx2-22vx+22vy2-22vy-d=0
Step 4
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 5
Substitute the values a=22v, b=-22v, and c=22vx2-22vx-d into the quadratic formula and solve for y.
22v±(-22v)2-4(22v(22vx2-22vx-d))2(22v)
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Add parentheses.
y=22v±(-22v)2-4(22(v(22(vx2)-22(vx)-d)))2(22v)
Step 6.1.2
Let u=22(v(22(vx2)-22(vx)-d)). Substitute u for all occurrences of 22(v(22(vx2)-22(vx)-d)).
Tap for more steps...
Step 6.1.2.1
Apply the product rule to -22v.
y=22v±(-22)2v2-4u2(22v)
Step 6.1.2.2
Raise -22 to the power of 2.
y=22v±484v2-4u2(22v)
y=22v±484v2-4u2(22v)
Step 6.1.3
Factor 4 out of 484v2-4u.
Tap for more steps...
Step 6.1.3.1
Factor 4 out of 484v2.
y=22v±4(121v2)-4u2(22v)
Step 6.1.3.2
Factor 4 out of -4u.
y=22v±4(121v2)+4(-u)2(22v)
Step 6.1.3.3
Factor 4 out of 4(121v2)+4(-u).
y=22v±4(121v2-u)2(22v)
y=22v±4(121v2-u)2(22v)
Step 6.1.4
Replace all occurrences of u with 22(v(22(vx2)-22(vx)-d)).
y=22v±4(121v2-(22(v(22(vx2)-22(vx)-d))))2(22v)
Step 6.1.5
Simplify each term.
Tap for more steps...
Step 6.1.5.1
Remove parentheses.
y=22v±4(121v2-(22(v(22vx2-22vx-d))))2(22v)
Step 6.1.5.2
Apply the distributive property.
y=22v±4(121v2-(22(v(22vx2)+v(-22vx)+v(-d))))2(22v)
Step 6.1.5.3
Simplify.
Tap for more steps...
Step 6.1.5.3.1
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)+v(-22vx)+v(-d))))2(22v)
Step 6.1.5.3.2
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)-22v(vx)+v(-d))))2(22v)
Step 6.1.5.3.3
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)-22v(vx)-vd)))2(22v)
y=22v±4(121v2-(22(22v(vx2)-22v(vx)-vd)))2(22v)
Step 6.1.5.4
Simplify each term.
Tap for more steps...
Step 6.1.5.4.1
Multiply v by v by adding the exponents.
Tap for more steps...
Step 6.1.5.4.1.1
Move v.
y=22v±4(121v2-(22(22(vv)x2-22v(vx)-vd)))2(22v)
Step 6.1.5.4.1.2
Multiply v by v.
y=22v±4(121v2-(22(22v2x2-22v(vx)-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v(vx)-vd)))2(22v)
Step 6.1.5.4.2
Multiply v by v by adding the exponents.
Tap for more steps...
Step 6.1.5.4.2.1
Move v.
y=22v±4(121v2-(22(22v2x2-22(vv)x-vd)))2(22v)
Step 6.1.5.4.2.2
Multiply v by v.
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
Step 6.1.5.5
Apply the distributive property.
y=22v±4(121v2-(22(22v2x2)+22(-22v2x)+22(-vd)))2(22v)
Step 6.1.5.6
Simplify.
Tap for more steps...
Step 6.1.5.6.1
Multiply 22 by 22.
y=22v±4(121v2-(484(v2x2)+22(-22v2x)+22(-vd)))2(22v)
Step 6.1.5.6.2
Multiply -22 by 22.
y=22v±4(121v2-(484(v2x2)-484(v2x)+22(-vd)))2(22v)
Step 6.1.5.6.3
Multiply -1 by 22.
y=22v±4(121v2-(484(v2x2)-484(v2x)-22(vd)))2(22v)
y=22v±4(121v2-(484(v2x2)-484(v2x)-22(vd)))2(22v)
Step 6.1.5.7
Remove parentheses.
y=22v±4(121v2-(484v2x2-484v2x-22vd))2(22v)
Step 6.1.5.8
Apply the distributive property.
y=22v±4(121v2-(484v2x2)-(-484v2x)-(-22vd))2(22v)
Step 6.1.5.9
Simplify.
Tap for more steps...
Step 6.1.5.9.1
Multiply 484 by -1.
y=22v±4(121v2-484(v2x2)-(-484v2x)-(-22vd))2(22v)
Step 6.1.5.9.2
Multiply -484 by -1.
y=22v±4(121v2-484(v2x2)+484(v2x)-(-22vd))2(22v)
Step 6.1.5.9.3
Multiply -22 by -1.
y=22v±4(121v2-484(v2x2)+484(v2x)+22(vd))2(22v)
y=22v±4(121v2-484(v2x2)+484(v2x)+22(vd))2(22v)
Step 6.1.5.10
Remove parentheses.
y=22v±4(121v2-484v2x2+484v2x+22vd)2(22v)
y=22v±4(121v2-484v2x2+484v2x+22vd)2(22v)
Step 6.1.6
Factor 11v out of 121v2-484v2x2+484v2x+22vd.
Tap for more steps...
Step 6.1.6.1
Factor 11v out of 121v2.
y=22v±4(11v(11v)-484v2x2+484v2x+22vd)2(22v)
Step 6.1.6.2
Factor 11v out of -484v2x2.
y=22v±4(11v(11v)+11v(-44vx2)+484v2x+22vd)2(22v)
Step 6.1.6.3
Factor 11v out of 484v2x.
y=22v±4(11v(11v)+11v(-44vx2)+11v(44vx)+22vd)2(22v)
Step 6.1.6.4
Factor 11v out of 22vd.
y=22v±4(11v(11v)+11v(-44vx2)+11v(44vx)+11v(2d))2(22v)
Step 6.1.6.5
Factor 11v out of 11v(11v)+11v(-44vx2).
y=22v±4(11v(11v-44vx2)+11v(44vx)+11v(2d))2(22v)
Step 6.1.6.6
Factor 11v out of 11v(11v-44vx2)+11v(44vx).
y=22v±4(11v(11v-44vx2+44vx)+11v(2d))2(22v)
Step 6.1.6.7
Factor 11v out of 11v(11v-44vx2+44vx)+11v(2d).
y=22v±4(11v(11v-44vx2+44vx+2d))2(22v)
y=22v±4(11v(11v-44vx2+44vx+2d))2(22v)
Step 6.1.7
Multiply 4 by 11.
y=22v±44v(11v-44vx2+44vx+2d)2(22v)
Step 6.1.8
Rewrite 44v(11v-44vx2+44vx+2d) as 22(11v(11v-44vx2+44vx+2d)).
Tap for more steps...
Step 6.1.8.1
Factor 4 out of 44.
y=22v±4(11)v(11v-44vx2+44vx+2d)2(22v)
Step 6.1.8.2
Rewrite 4 as 22.
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
Step 6.1.8.3
Add parentheses.
y=22v±22(11(v(11v-44vx2+44vx+2d)))2(22v)
Step 6.1.8.4
Add parentheses.
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
Step 6.1.9
Pull terms out from under the radical.
y=22v±211v(11v-44vx2+44vx+2d)2(22v)
y=22v±211v(11v-44vx2+44vx+2d)2(22v)
Step 6.2
Multiply 2 by 22.
y=22v±211v(11v-44vx2+44vx+2d)44v
Step 6.3
Simplify 22v±211v(11v-44vx2+44vx+2d)44v.
y=11v±11v(11v-44vx2+44vx+2d)22v
y=11v±11v(11v-44vx2+44vx+2d)22v
Step 7
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Add parentheses.
y=22v±(-22v)2-4(22(v(22(vx2)-22(vx)-d)))2(22v)
Step 7.1.2
Let u=22(v(22(vx2)-22(vx)-d)). Substitute u for all occurrences of 22(v(22(vx2)-22(vx)-d)).
Tap for more steps...
Step 7.1.2.1
Apply the product rule to -22v.
y=22v±(-22)2v2-4u2(22v)
Step 7.1.2.2
Raise -22 to the power of 2.
y=22v±484v2-4u2(22v)
y=22v±484v2-4u2(22v)
Step 7.1.3
Factor 4 out of 484v2-4u.
Tap for more steps...
Step 7.1.3.1
Factor 4 out of 484v2.
y=22v±4(121v2)-4u2(22v)
Step 7.1.3.2
Factor 4 out of -4u.
y=22v±4(121v2)+4(-u)2(22v)
Step 7.1.3.3
Factor 4 out of 4(121v2)+4(-u).
y=22v±4(121v2-u)2(22v)
y=22v±4(121v2-u)2(22v)
Step 7.1.4
Replace all occurrences of u with 22(v(22(vx2)-22(vx)-d)).
y=22v±4(121v2-(22(v(22(vx2)-22(vx)-d))))2(22v)
Step 7.1.5
Simplify each term.
Tap for more steps...
Step 7.1.5.1
Remove parentheses.
y=22v±4(121v2-(22(v(22vx2-22vx-d))))2(22v)
Step 7.1.5.2
Apply the distributive property.
y=22v±4(121v2-(22(v(22vx2)+v(-22vx)+v(-d))))2(22v)
Step 7.1.5.3
Simplify.
Tap for more steps...
Step 7.1.5.3.1
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)+v(-22vx)+v(-d))))2(22v)
Step 7.1.5.3.2
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)-22v(vx)+v(-d))))2(22v)
Step 7.1.5.3.3
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)-22v(vx)-vd)))2(22v)
y=22v±4(121v2-(22(22v(vx2)-22v(vx)-vd)))2(22v)
Step 7.1.5.4
Simplify each term.
Tap for more steps...
Step 7.1.5.4.1
Multiply v by v by adding the exponents.
Tap for more steps...
Step 7.1.5.4.1.1
Move v.
y=22v±4(121v2-(22(22(vv)x2-22v(vx)-vd)))2(22v)
Step 7.1.5.4.1.2
Multiply v by v.
y=22v±4(121v2-(22(22v2x2-22v(vx)-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v(vx)-vd)))2(22v)
Step 7.1.5.4.2
Multiply v by v by adding the exponents.
Tap for more steps...
Step 7.1.5.4.2.1
Move v.
y=22v±4(121v2-(22(22v2x2-22(vv)x-vd)))2(22v)
Step 7.1.5.4.2.2
Multiply v by v.
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
Step 7.1.5.5
Apply the distributive property.
y=22v±4(121v2-(22(22v2x2)+22(-22v2x)+22(-vd)))2(22v)
Step 7.1.5.6
Simplify.
Tap for more steps...
Step 7.1.5.6.1
Multiply 22 by 22.
y=22v±4(121v2-(484(v2x2)+22(-22v2x)+22(-vd)))2(22v)
Step 7.1.5.6.2
Multiply -22 by 22.
y=22v±4(121v2-(484(v2x2)-484(v2x)+22(-vd)))2(22v)
Step 7.1.5.6.3
Multiply -1 by 22.
y=22v±4(121v2-(484(v2x2)-484(v2x)-22(vd)))2(22v)
y=22v±4(121v2-(484(v2x2)-484(v2x)-22(vd)))2(22v)
Step 7.1.5.7
Remove parentheses.
y=22v±4(121v2-(484v2x2-484v2x-22vd))2(22v)
Step 7.1.5.8
Apply the distributive property.
y=22v±4(121v2-(484v2x2)-(-484v2x)-(-22vd))2(22v)
Step 7.1.5.9
Simplify.
Tap for more steps...
Step 7.1.5.9.1
Multiply 484 by -1.
y=22v±4(121v2-484(v2x2)-(-484v2x)-(-22vd))2(22v)
Step 7.1.5.9.2
Multiply -484 by -1.
y=22v±4(121v2-484(v2x2)+484(v2x)-(-22vd))2(22v)
Step 7.1.5.9.3
Multiply -22 by -1.
y=22v±4(121v2-484(v2x2)+484(v2x)+22(vd))2(22v)
y=22v±4(121v2-484(v2x2)+484(v2x)+22(vd))2(22v)
Step 7.1.5.10
Remove parentheses.
y=22v±4(121v2-484v2x2+484v2x+22vd)2(22v)
y=22v±4(121v2-484v2x2+484v2x+22vd)2(22v)
Step 7.1.6
Factor 11v out of 121v2-484v2x2+484v2x+22vd.
Tap for more steps...
Step 7.1.6.1
Factor 11v out of 121v2.
y=22v±4(11v(11v)-484v2x2+484v2x+22vd)2(22v)
Step 7.1.6.2
Factor 11v out of -484v2x2.
y=22v±4(11v(11v)+11v(-44vx2)+484v2x+22vd)2(22v)
Step 7.1.6.3
Factor 11v out of 484v2x.
y=22v±4(11v(11v)+11v(-44vx2)+11v(44vx)+22vd)2(22v)
Step 7.1.6.4
Factor 11v out of 22vd.
y=22v±4(11v(11v)+11v(-44vx2)+11v(44vx)+11v(2d))2(22v)
Step 7.1.6.5
Factor 11v out of 11v(11v)+11v(-44vx2).
y=22v±4(11v(11v-44vx2)+11v(44vx)+11v(2d))2(22v)
Step 7.1.6.6
Factor 11v out of 11v(11v-44vx2)+11v(44vx).
y=22v±4(11v(11v-44vx2+44vx)+11v(2d))2(22v)
Step 7.1.6.7
Factor 11v out of 11v(11v-44vx2+44vx)+11v(2d).
y=22v±4(11v(11v-44vx2+44vx+2d))2(22v)
y=22v±4(11v(11v-44vx2+44vx+2d))2(22v)
Step 7.1.7
Multiply 4 by 11.
y=22v±44v(11v-44vx2+44vx+2d)2(22v)
Step 7.1.8
Rewrite 44v(11v-44vx2+44vx+2d) as 22(11v(11v-44vx2+44vx+2d)).
Tap for more steps...
Step 7.1.8.1
Factor 4 out of 44.
y=22v±4(11)v(11v-44vx2+44vx+2d)2(22v)
Step 7.1.8.2
Rewrite 4 as 22.
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
Step 7.1.8.3
Add parentheses.
y=22v±22(11(v(11v-44vx2+44vx+2d)))2(22v)
Step 7.1.8.4
Add parentheses.
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
Step 7.1.9
Pull terms out from under the radical.
y=22v±211v(11v-44vx2+44vx+2d)2(22v)
y=22v±211v(11v-44vx2+44vx+2d)2(22v)
Step 7.2
Multiply 2 by 22.
y=22v±211v(11v-44vx2+44vx+2d)44v
Step 7.3
Simplify 22v±211v(11v-44vx2+44vx+2d)44v.
y=11v±11v(11v-44vx2+44vx+2d)22v
Step 7.4
Change the ± to +.
y=11v+11v(11v-44vx2+44vx+2d)22v
y=11v+11v(11v-44vx2+44vx+2d)22v
Step 8
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Add parentheses.
y=22v±(-22v)2-4(22(v(22(vx2)-22(vx)-d)))2(22v)
Step 8.1.2
Let u=22(v(22(vx2)-22(vx)-d)). Substitute u for all occurrences of 22(v(22(vx2)-22(vx)-d)).
Tap for more steps...
Step 8.1.2.1
Apply the product rule to -22v.
y=22v±(-22)2v2-4u2(22v)
Step 8.1.2.2
Raise -22 to the power of 2.
y=22v±484v2-4u2(22v)
y=22v±484v2-4u2(22v)
Step 8.1.3
Factor 4 out of 484v2-4u.
Tap for more steps...
Step 8.1.3.1
Factor 4 out of 484v2.
y=22v±4(121v2)-4u2(22v)
Step 8.1.3.2
Factor 4 out of -4u.
y=22v±4(121v2)+4(-u)2(22v)
Step 8.1.3.3
Factor 4 out of 4(121v2)+4(-u).
y=22v±4(121v2-u)2(22v)
y=22v±4(121v2-u)2(22v)
Step 8.1.4
Replace all occurrences of u with 22(v(22(vx2)-22(vx)-d)).
y=22v±4(121v2-(22(v(22(vx2)-22(vx)-d))))2(22v)
Step 8.1.5
Simplify each term.
Tap for more steps...
Step 8.1.5.1
Remove parentheses.
y=22v±4(121v2-(22(v(22vx2-22vx-d))))2(22v)
Step 8.1.5.2
Apply the distributive property.
y=22v±4(121v2-(22(v(22vx2)+v(-22vx)+v(-d))))2(22v)
Step 8.1.5.3
Simplify.
Tap for more steps...
Step 8.1.5.3.1
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)+v(-22vx)+v(-d))))2(22v)
Step 8.1.5.3.2
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)-22v(vx)+v(-d))))2(22v)
Step 8.1.5.3.3
Rewrite using the commutative property of multiplication.
y=22v±4(121v2-(22(22v(vx2)-22v(vx)-vd)))2(22v)
y=22v±4(121v2-(22(22v(vx2)-22v(vx)-vd)))2(22v)
Step 8.1.5.4
Simplify each term.
Tap for more steps...
Step 8.1.5.4.1
Multiply v by v by adding the exponents.
Tap for more steps...
Step 8.1.5.4.1.1
Move v.
y=22v±4(121v2-(22(22(vv)x2-22v(vx)-vd)))2(22v)
Step 8.1.5.4.1.2
Multiply v by v.
y=22v±4(121v2-(22(22v2x2-22v(vx)-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v(vx)-vd)))2(22v)
Step 8.1.5.4.2
Multiply v by v by adding the exponents.
Tap for more steps...
Step 8.1.5.4.2.1
Move v.
y=22v±4(121v2-(22(22v2x2-22(vv)x-vd)))2(22v)
Step 8.1.5.4.2.2
Multiply v by v.
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
y=22v±4(121v2-(22(22v2x2-22v2x-vd)))2(22v)
Step 8.1.5.5
Apply the distributive property.
y=22v±4(121v2-(22(22v2x2)+22(-22v2x)+22(-vd)))2(22v)
Step 8.1.5.6
Simplify.
Tap for more steps...
Step 8.1.5.6.1
Multiply 22 by 22.
y=22v±4(121v2-(484(v2x2)+22(-22v2x)+22(-vd)))2(22v)
Step 8.1.5.6.2
Multiply -22 by 22.
y=22v±4(121v2-(484(v2x2)-484(v2x)+22(-vd)))2(22v)
Step 8.1.5.6.3
Multiply -1 by 22.
y=22v±4(121v2-(484(v2x2)-484(v2x)-22(vd)))2(22v)
y=22v±4(121v2-(484(v2x2)-484(v2x)-22(vd)))2(22v)
Step 8.1.5.7
Remove parentheses.
y=22v±4(121v2-(484v2x2-484v2x-22vd))2(22v)
Step 8.1.5.8
Apply the distributive property.
y=22v±4(121v2-(484v2x2)-(-484v2x)-(-22vd))2(22v)
Step 8.1.5.9
Simplify.
Tap for more steps...
Step 8.1.5.9.1
Multiply 484 by -1.
y=22v±4(121v2-484(v2x2)-(-484v2x)-(-22vd))2(22v)
Step 8.1.5.9.2
Multiply -484 by -1.
y=22v±4(121v2-484(v2x2)+484(v2x)-(-22vd))2(22v)
Step 8.1.5.9.3
Multiply -22 by -1.
y=22v±4(121v2-484(v2x2)+484(v2x)+22(vd))2(22v)
y=22v±4(121v2-484(v2x2)+484(v2x)+22(vd))2(22v)
Step 8.1.5.10
Remove parentheses.
y=22v±4(121v2-484v2x2+484v2x+22vd)2(22v)
y=22v±4(121v2-484v2x2+484v2x+22vd)2(22v)
Step 8.1.6
Factor 11v out of 121v2-484v2x2+484v2x+22vd.
Tap for more steps...
Step 8.1.6.1
Factor 11v out of 121v2.
y=22v±4(11v(11v)-484v2x2+484v2x+22vd)2(22v)
Step 8.1.6.2
Factor 11v out of -484v2x2.
y=22v±4(11v(11v)+11v(-44vx2)+484v2x+22vd)2(22v)
Step 8.1.6.3
Factor 11v out of 484v2x.
y=22v±4(11v(11v)+11v(-44vx2)+11v(44vx)+22vd)2(22v)
Step 8.1.6.4
Factor 11v out of 22vd.
y=22v±4(11v(11v)+11v(-44vx2)+11v(44vx)+11v(2d))2(22v)
Step 8.1.6.5
Factor 11v out of 11v(11v)+11v(-44vx2).
y=22v±4(11v(11v-44vx2)+11v(44vx)+11v(2d))2(22v)
Step 8.1.6.6
Factor 11v out of 11v(11v-44vx2)+11v(44vx).
y=22v±4(11v(11v-44vx2+44vx)+11v(2d))2(22v)
Step 8.1.6.7
Factor 11v out of 11v(11v-44vx2+44vx)+11v(2d).
y=22v±4(11v(11v-44vx2+44vx+2d))2(22v)
y=22v±4(11v(11v-44vx2+44vx+2d))2(22v)
Step 8.1.7
Multiply 4 by 11.
y=22v±44v(11v-44vx2+44vx+2d)2(22v)
Step 8.1.8
Rewrite 44v(11v-44vx2+44vx+2d) as 22(11v(11v-44vx2+44vx+2d)).
Tap for more steps...
Step 8.1.8.1
Factor 4 out of 44.
y=22v±4(11)v(11v-44vx2+44vx+2d)2(22v)
Step 8.1.8.2
Rewrite 4 as 22.
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
Step 8.1.8.3
Add parentheses.
y=22v±22(11(v(11v-44vx2+44vx+2d)))2(22v)
Step 8.1.8.4
Add parentheses.
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
y=22v±22(11v(11v-44vx2+44vx+2d))2(22v)
Step 8.1.9
Pull terms out from under the radical.
y=22v±211v(11v-44vx2+44vx+2d)2(22v)
y=22v±211v(11v-44vx2+44vx+2d)2(22v)
Step 8.2
Multiply 2 by 22.
y=22v±211v(11v-44vx2+44vx+2d)44v
Step 8.3
Simplify 22v±211v(11v-44vx2+44vx+2d)44v.
y=11v±11v(11v-44vx2+44vx+2d)22v
Step 8.4
Change the ± to -.
y=11v-11v(11v-44vx2+44vx+2d)22v
y=11v-11v(11v-44vx2+44vx+2d)22v
Step 9
The final answer is the combination of both solutions.
y=11v+11v(11v-44vx2+44vx+2d)22v
y=11v-11v(11v-44vx2+44vx+2d)22v
Step 10
Set the radicand in 11v(11v-44vx2+44vx+2d) greater than or equal to 0 to find where the expression is defined.
11v(11v-44vx2+44vx+2d)0
Step 11
Solve for v.
Tap for more steps...
Step 11.1
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
v=0
11v-44vx2+44vx+2d=0
Step 11.2
Set v equal to 0.
v=0
Step 11.3
Set 11v-44vx2+44vx+2d equal to 0 and solve for v.
Tap for more steps...
Step 11.3.1
Set 11v-44vx2+44vx+2d equal to 0.
11v-44vx2+44vx+2d=0
Step 11.3.2
Solve 11v-44vx2+44vx+2d=0 for v.
Tap for more steps...
Step 11.3.2.1
Subtract 2d from both sides of the equation.
11v-44vx2+44vx=-2d
Step 11.3.2.2
Factor 11v out of 11v-44vx2+44vx.
Tap for more steps...
Step 11.3.2.2.1
Factor 11v out of 11v.
11v(1)-44vx2+44vx=-2d
Step 11.3.2.2.2
Factor 11v out of -44vx2.
11v(1)+11v(-4x2)+44vx=-2d
Step 11.3.2.2.3
Factor 11v out of 44vx.
11v(1)+11v(-4x2)+11v(4x)=-2d
Step 11.3.2.2.4
Factor 11v out of 11v(1)+11v(-4x2).
11v(1-4x2)+11v(4x)=-2d
Step 11.3.2.2.5
Factor 11v out of 11v(1-4x2)+11v(4x).
11v(1-4x2+4x)=-2d
11v(1-4x2+4x)=-2d
Step 11.3.2.3
Reorder terms.
11v(-4x2+4x+1)=-2d
Step 11.3.2.4
Divide each term in 11v(-4x2+4x+1)=-2d by 11(-4x2+4x+1) and simplify.
Tap for more steps...
Step 11.3.2.4.1
Divide each term in 11v(-4x2+4x+1)=-2d by 11(-4x2+4x+1).
11v(-4x2+4x+1)11(-4x2+4x+1)=-2d11(-4x2+4x+1)
Step 11.3.2.4.2
Simplify the left side.
Tap for more steps...
Step 11.3.2.4.2.1
Cancel the common factor of 11.
Tap for more steps...
Step 11.3.2.4.2.1.1
Cancel the common factor.
11v(-4x2+4x+1)11(-4x2+4x+1)=-2d11(-4x2+4x+1)
Step 11.3.2.4.2.1.2
Rewrite the expression.
v(-4x2+4x+1)-4x2+4x+1=-2d11(-4x2+4x+1)
v(-4x2+4x+1)-4x2+4x+1=-2d11(-4x2+4x+1)
Step 11.3.2.4.2.2
Cancel the common factor of -4x2+4x+1.
Tap for more steps...
Step 11.3.2.4.2.2.1
Cancel the common factor.
v(-4x2+4x+1)-4x2+4x+1=-2d11(-4x2+4x+1)
Step 11.3.2.4.2.2.2
Divide v by 1.
v=-2d11(-4x2+4x+1)
v=-2d11(-4x2+4x+1)
v=-2d11(-4x2+4x+1)
Step 11.3.2.4.3
Simplify the right side.
Tap for more steps...
Step 11.3.2.4.3.1
Move the negative in front of the fraction.
v=-2d11(-4x2+4x+1)
Step 11.3.2.4.3.2
Factor -1 out of -4x2.
v=-2d11(-(4x2)+4x+1)
Step 11.3.2.4.3.3
Factor -1 out of 4x.
v=-2d11(-(4x2)-(-4x)+1)
Step 11.3.2.4.3.4
Factor -1 out of -(4x2)-(-4x).
v=-2d11(-(4x2-4x)+1)
Step 11.3.2.4.3.5
Rewrite 1 as -1(-1).
v=-2d11(-(4x2-4x)-1(-1))
Step 11.3.2.4.3.6
Factor -1 out of -(4x2-4x)-1(-1).
v=-2d11(-(4x2-4x-1))
Step 11.3.2.4.3.7
Simplify the expression.
Tap for more steps...
Step 11.3.2.4.3.7.1
Rewrite -(4x2-4x-1) as -1(4x2-4x-1).
v=-2d11(-1(4x2-4x-1))
Step 11.3.2.4.3.7.2
Move the negative in front of the fraction.
v=--2d11(4x2-4x-1)
Step 11.3.2.4.3.7.3
Multiply -1 by -1.
v=12d11(4x2-4x-1)
Step 11.3.2.4.3.7.4
Multiply 2d11(4x2-4x-1) by 1.
v=2d11(4x2-4x-1)
v=2d11(4x2-4x-1)
v=2d11(4x2-4x-1)
v=2d11(4x2-4x-1)
v=2d11(4x2-4x-1)
v=2d11(4x2-4x-1)
Step 11.4
The final solution is all the values that make 11v(11v-44vx2+44vx+2d)0 true.
v=0
v=2d11(4x2-4x-1)
v=0
v=2d11(4x2-4x-1)
Step 12
Set the denominator in 11v+11v(11v-44vx2+44vx+2d)22v equal to 0 to find where the expression is undefined.
22v=0
Step 13
Divide each term in 22v=0 by 22 and simplify.
Tap for more steps...
Step 13.1
Divide each term in 22v=0 by 22.
22v22=022
Step 13.2
Simplify the left side.
Tap for more steps...
Step 13.2.1
Cancel the common factor of 22.
Tap for more steps...
Step 13.2.1.1
Cancel the common factor.
22v22=022
Step 13.2.1.2
Divide v by 1.
v=022
v=022
v=022
Step 13.3
Simplify the right side.
Tap for more steps...
Step 13.3.1
Divide 0 by 22.
v=0
v=0
v=0
Step 14
The domain is all values of v that make the expression defined.
(No(Minimum),No(Maximum)]
Set-Builder Notation:
{v|No(Minimum)<vNo(Maximum)}
 [x2  12  π  xdx ]