Linear Algebra Examples

Find the Characteristic Equation [[3,2],[4,6]]
[3246][3246]
Step 1
Set up the formula to find the characteristic equation p(λ)p(λ).
p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2)
Step 2
The identity matrix or unit matrix of size 22 is the 2×22×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001][1001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI2)p(λ)=determinant(AλI2).
Tap for more steps...
Step 3.1
Substitute [3246][3246] for AA.
p(λ)=determinant([3246]-λI2)p(λ)=determinant([3246]λI2)
Step 3.2
Substitute [1001][1001] for I2I2.
p(λ)=determinant([3246]-λ[1001])p(λ)=determinant([3246]λ[1001])
p(λ)=determinant([3246]-λ[1001])p(λ)=determinant([3246]λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λλ by each element of the matrix.
p(λ)=determinant([3246]+[-λ1-λ0-λ0-λ1])p(λ)=determinant([3246]+[λ1λ0λ0λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -11 by 11.
p(λ)=determinant([3246]+[-λ-λ0-λ0-λ1])p(λ)=determinant([3246]+[λλ0λ0λ1])
Step 4.1.2.2
Multiply -λ0λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 00 by -11.
p(λ)=determinant([3246]+[-λ0λ-λ0-λ1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([3246]+[-λ0-λ0-λ1])
p(λ)=determinant([3246]+[-λ0-λ0-λ1])
Step 4.1.2.3
Multiply -λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([3246]+[-λ00λ-λ1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([3246]+[-λ00-λ1])
p(λ)=determinant([3246]+[-λ00-λ1])
Step 4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([3246]+[-λ00-λ])
p(λ)=determinant([3246]+[-λ00-λ])
p(λ)=determinant([3246]+[-λ00-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[3-λ2+04+06-λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 2 and 0.
p(λ)=determinant[3-λ24+06-λ]
Step 4.3.2
Add 4 and 0.
p(λ)=determinant[3-λ246-λ]
p(λ)=determinant[3-λ246-λ]
p(λ)=determinant[3-λ246-λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(3-λ)(6-λ)-42
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Expand (3-λ)(6-λ) using the FOIL Method.
Tap for more steps...
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=3(6-λ)-λ(6-λ)-42
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=36+3(-λ)-λ(6-λ)-42
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=36+3(-λ)-λ6-λ(-λ)-42
p(λ)=36+3(-λ)-λ6-λ(-λ)-42
Step 5.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.2.1.1
Multiply 3 by 6.
p(λ)=18+3(-λ)-λ6-λ(-λ)-42
Step 5.2.1.2.1.2
Multiply -1 by 3.
p(λ)=18-3λ-λ6-λ(-λ)-42
Step 5.2.1.2.1.3
Multiply 6 by -1.
p(λ)=18-3λ-6λ-λ(-λ)-42
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=18-3λ-6λ-1-1λλ-42
Step 5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.2.1.2.1.5.1
Move λ.
p(λ)=18-3λ-6λ-1-1(λλ)-42
Step 5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=18-3λ-6λ-1-1λ2-42
p(λ)=18-3λ-6λ-1-1λ2-42
Step 5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=18-3λ-6λ+1λ2-42
Step 5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=18-3λ-6λ+λ2-42
p(λ)=18-3λ-6λ+λ2-42
Step 5.2.1.2.2
Subtract 6λ from -3λ.
p(λ)=18-9λ+λ2-42
p(λ)=18-9λ+λ2-42
Step 5.2.1.3
Multiply -4 by 2.
p(λ)=18-9λ+λ2-8
p(λ)=18-9λ+λ2-8
Step 5.2.2
Subtract 8 from 18.
p(λ)=-9λ+λ2+10
Step 5.2.3
Reorder -9λ and λ2.
p(λ)=λ2-9λ+10
p(λ)=λ2-9λ+10
p(λ)=λ2-9λ+10
(
(
)
)
|
|
[
[
]
]
{
{
}
}
A
A
7
7
8
8
9
9
B
B
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]