Linear Algebra Examples

Find the Eigenvalues [[-4,0,1],[3,-6,3],[1,0,-4]]
[-4013-6310-4]401363104
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI3)
Step 2
The identity matrix or unit matrix of size 3 is the 3×3 square matrix with ones on the main diagonal and zeros elsewhere.
[100010001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI3).
Tap for more steps...
Step 3.1
Substitute [-4013-6310-4] for A.
p(λ)=determinant([-4013-6310-4]-λI3)
Step 3.2
Substitute [100010001] for I3.
p(λ)=determinant([-4013-6310-4]-λ[100010001])
p(λ)=determinant([-4013-6310-4]-λ[100010001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([-4013-6310-4]+[-λ1-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([-4013-6310-4]+[-λ-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
Step 4.1.2.2
Multiply -λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([-4013-6310-4]+[-λ0λ-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([-4013-6310-4]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
p(λ)=determinant([-4013-6310-4]+[-λ0-λ0-λ0-λ1-λ0-λ0-λ0-λ1])
Step 4.1.2.3
Multiply -λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([-4013-6310-4]+[-λ00λ-λ0-λ1-λ0-λ0-λ0-λ1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([-4013-6310-4]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])
p(λ)=determinant([-4013-6310-4]+[-λ00-λ0-λ1-λ0-λ0-λ0-λ1])
Step 4.1.2.4
Multiply -λ0.
Tap for more steps...
Step 4.1.2.4.1
Multiply 0 by -1.
p(λ)=determinant([-4013-6310-4]+[-λ000λ-λ1-λ0-λ0-λ0-λ1])
Step 4.1.2.4.2
Multiply 0 by λ.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ1-λ0-λ0-λ0-λ1])
p(λ)=determinant([-4013-6310-4]+[-λ000-λ1-λ0-λ0-λ0-λ1])
Step 4.1.2.5
Multiply -1 by 1.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ-λ0-λ0-λ0-λ1])
Step 4.1.2.6
Multiply -λ0.
Tap for more steps...
Step 4.1.2.6.1
Multiply 0 by -1.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ0λ-λ0-λ0-λ1])
Step 4.1.2.6.2
Multiply 0 by λ.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ0-λ0-λ0-λ1])
p(λ)=determinant([-4013-6310-4]+[-λ000-λ0-λ0-λ0-λ1])
Step 4.1.2.7
Multiply -λ0.
Tap for more steps...
Step 4.1.2.7.1
Multiply 0 by -1.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ00λ-λ0-λ1])
Step 4.1.2.7.2
Multiply 0 by λ.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ00-λ0-λ1])
p(λ)=determinant([-4013-6310-4]+[-λ000-λ00-λ0-λ1])
Step 4.1.2.8
Multiply -λ0.
Tap for more steps...
Step 4.1.2.8.1
Multiply 0 by -1.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ000λ-λ1])
Step 4.1.2.8.2
Multiply 0 by λ.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ000-λ1])
p(λ)=determinant([-4013-6310-4]+[-λ000-λ000-λ1])
Step 4.1.2.9
Multiply -1 by 1.
p(λ)=determinant([-4013-6310-4]+[-λ000-λ000-λ])
p(λ)=determinant([-4013-6310-4]+[-λ000-λ000-λ])
p(λ)=determinant([-4013-6310-4]+[-λ000-λ000-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[-4-λ0+01+03+0-6-λ3+01+00+0-4-λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 0 and 0.
p(λ)=determinant[-4-λ01+03+0-6-λ3+01+00+0-4-λ]
Step 4.3.2
Add 1 and 0.
p(λ)=determinant[-4-λ013+0-6-λ3+01+00+0-4-λ]
Step 4.3.3
Add 3 and 0.
p(λ)=determinant[-4-λ013-6-λ3+01+00+0-4-λ]
Step 4.3.4
Add 3 and 0.
p(λ)=determinant[-4-λ013-6-λ31+00+0-4-λ]
Step 4.3.5
Add 1 and 0.
p(λ)=determinant[-4-λ013-6-λ310+0-4-λ]
Step 4.3.6
Add 0 and 0.
p(λ)=determinant[-4-λ013-6-λ310-4-λ]
p(λ)=determinant[-4-λ013-6-λ310-4-λ]
p(λ)=determinant[-4-λ013-6-λ310-4-λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Tap for more steps...
Step 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|331-4-λ|
Step 5.1.4
Multiply element a12 by its cofactor.
0|331-4-λ|
Step 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|-4-λ11-4-λ|
Step 5.1.6
Multiply element a22 by its cofactor.
(-6-λ)|-4-λ11-4-λ|
Step 5.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|-4-λ133|
Step 5.1.8
Multiply element a32 by its cofactor.
0|-4-λ133|
Step 5.1.9
Add the terms together.
p(λ)=0|331-4-λ|+(-6-λ)|-4-λ11-4-λ|+0|-4-λ133|
p(λ)=0|331-4-λ|+(-6-λ)|-4-λ11-4-λ|+0|-4-λ133|
Step 5.2
Multiply 0 by |331-4-λ|.
p(λ)=0+(-6-λ)|-4-λ11-4-λ|+0|-4-λ133|
Step 5.3
Multiply 0 by |-4-λ133|.
p(λ)=0+(-6-λ)|-4-λ11-4-λ|+0
Step 5.4
Evaluate |-4-λ11-4-λ|.
Tap for more steps...
Step 5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=0+(-6-λ)((-4-λ)(-4-λ)-11)+0
Step 5.4.2
Simplify the determinant.
Tap for more steps...
Step 5.4.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.1
Expand (-4-λ)(-4-λ) using the FOIL Method.
Tap for more steps...
Step 5.4.2.1.1.1
Apply the distributive property.
p(λ)=0+(-6-λ)(-4(-4-λ)-λ(-4-λ)-11)+0
Step 5.4.2.1.1.2
Apply the distributive property.
p(λ)=0+(-6-λ)(-4-4-4(-λ)-λ(-4-λ)-11)+0
Step 5.4.2.1.1.3
Apply the distributive property.
p(λ)=0+(-6-λ)(-4-4-4(-λ)-λ-4-λ(-λ)-11)+0
p(λ)=0+(-6-λ)(-4-4-4(-λ)-λ-4-λ(-λ)-11)+0
Step 5.4.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.4.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.4.2.1.2.1.1
Multiply -4 by -4.
p(λ)=0+(-6-λ)(16-4(-λ)-λ-4-λ(-λ)-11)+0
Step 5.4.2.1.2.1.2
Multiply -1 by -4.
p(λ)=0+(-6-λ)(16+4λ-λ-4-λ(-λ)-11)+0
Step 5.4.2.1.2.1.3
Multiply -4 by -1.
p(λ)=0+(-6-λ)(16+4λ+4λ-λ(-λ)-11)+0
Step 5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=0+(-6-λ)(16+4λ+4λ-1-1λλ-11)+0
Step 5.4.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.4.2.1.2.1.5.1
Move λ.
p(λ)=0+(-6-λ)(16+4λ+4λ-1-1(λλ)-11)+0
Step 5.4.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=0+(-6-λ)(16+4λ+4λ-1-1λ2-11)+0
p(λ)=0+(-6-λ)(16+4λ+4λ-1-1λ2-11)+0
Step 5.4.2.1.2.1.6
Multiply -1 by -1.
p(λ)=0+(-6-λ)(16+4λ+4λ+1λ2-11)+0
Step 5.4.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=0+(-6-λ)(16+4λ+4λ+λ2-11)+0
p(λ)=0+(-6-λ)(16+4λ+4λ+λ2-11)+0
Step 5.4.2.1.2.2
Add 4λ and 4λ.
p(λ)=0+(-6-λ)(16+8λ+λ2-11)+0
p(λ)=0+(-6-λ)(16+8λ+λ2-11)+0
Step 5.4.2.1.3
Multiply -1 by 1.
p(λ)=0+(-6-λ)(16+8λ+λ2-1)+0
p(λ)=0+(-6-λ)(16+8λ+λ2-1)+0
Step 5.4.2.2
Subtract 1 from 16.
p(λ)=0+(-6-λ)(8λ+λ2+15)+0
Step 5.4.2.3
Reorder 8λ and λ2.
p(λ)=0+(-6-λ)(λ2+8λ+15)+0
p(λ)=0+(-6-λ)(λ2+8λ+15)+0
p(λ)=0+(-6-λ)(λ2+8λ+15)+0
Step 5.5
Simplify the determinant.
Tap for more steps...
Step 5.5.1
Combine the opposite terms in 0+(-6-λ)(λ2+8λ+15)+0.
Tap for more steps...
Step 5.5.1.1
Add 0 and (-6-λ)(λ2+8λ+15).
p(λ)=(-6-λ)(λ2+8λ+15)+0
Step 5.5.1.2
Add (-6-λ)(λ2+8λ+15) and 0.
p(λ)=(-6-λ)(λ2+8λ+15)
p(λ)=(-6-λ)(λ2+8λ+15)
Step 5.5.2
Expand (-6-λ)(λ2+8λ+15) by multiplying each term in the first expression by each term in the second expression.
p(λ)=-6λ2-6(8λ)-615-λλ2-λ(8λ)-λ15
Step 5.5.3
Simplify each term.
Tap for more steps...
Step 5.5.3.1
Multiply 8 by -6.
p(λ)=-6λ2-48λ-615-λλ2-λ(8λ)-λ15
Step 5.5.3.2
Multiply -6 by 15.
p(λ)=-6λ2-48λ-90-λλ2-λ(8λ)-λ15
Step 5.5.3.3
Multiply λ by λ2 by adding the exponents.
Tap for more steps...
Step 5.5.3.3.1
Move λ2.
p(λ)=-6λ2-48λ-90-(λ2λ)-λ(8λ)-λ15
Step 5.5.3.3.2
Multiply λ2 by λ.
Tap for more steps...
Step 5.5.3.3.2.1
Raise λ to the power of 1.
p(λ)=-6λ2-48λ-90-(λ2λ1)-λ(8λ)-λ15
Step 5.5.3.3.2.2
Use the power rule aman=am+n to combine exponents.
p(λ)=-6λ2-48λ-90-λ2+1-λ(8λ)-λ15
p(λ)=-6λ2-48λ-90-λ2+1-λ(8λ)-λ15
Step 5.5.3.3.3
Add 2 and 1.
p(λ)=-6λ2-48λ-90-λ3-λ(8λ)-λ15
p(λ)=-6λ2-48λ-90-λ3-λ(8λ)-λ15
Step 5.5.3.4
Rewrite using the commutative property of multiplication.
p(λ)=-6λ2-48λ-90-λ3-18λλ-λ15
Step 5.5.3.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.5.3.5.1
Move λ.
p(λ)=-6λ2-48λ-90-λ3-18(λλ)-λ15
Step 5.5.3.5.2
Multiply λ by λ.
p(λ)=-6λ2-48λ-90-λ3-18λ2-λ15
p(λ)=-6λ2-48λ-90-λ3-18λ2-λ15
Step 5.5.3.6
Multiply -1 by 8.
p(λ)=-6λ2-48λ-90-λ3-8λ2-λ15
Step 5.5.3.7
Multiply 15 by -1.
p(λ)=-6λ2-48λ-90-λ3-8λ2-15λ
p(λ)=-6λ2-48λ-90-λ3-8λ2-15λ
Step 5.5.4
Subtract 8λ2 from -6λ2.
p(λ)=-14λ2-48λ-90-λ3-15λ
Step 5.5.5
Subtract 15λ from -48λ.
p(λ)=-14λ2-63λ-90-λ3
Step 5.5.6
Move -90.
p(λ)=-14λ2-63λ-λ3-90
Step 5.5.7
Move -63λ.
p(λ)=-14λ2-λ3-63λ-90
Step 5.5.8
Reorder -14λ2 and -λ3.
p(λ)=-λ3-14λ2-63λ-90
p(λ)=-λ3-14λ2-63λ-90
p(λ)=-λ3-14λ2-63λ-90
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
-λ3-14λ2-63λ-90=0
Step 7
Solve for λ.
Tap for more steps...
Step 7.1
Factor the left side of the equation.
Tap for more steps...
Step 7.1.1
Factor -1 out of -λ3-14λ2-63λ-90.
Tap for more steps...
Step 7.1.1.1
Factor -1 out of -λ3.
-(λ3)-14λ2-63λ-90=0
Step 7.1.1.2
Factor -1 out of -14λ2.
-(λ3)-(14λ2)-63λ-90=0
Step 7.1.1.3
Factor -1 out of -63λ.
-(λ3)-(14λ2)-(63λ)-90=0
Step 7.1.1.4
Rewrite -90 as -1(90).
-(λ3)-(14λ2)-(63λ)-190=0
Step 7.1.1.5
Factor -1 out of -(λ3)-(14λ2).
-(λ3+14λ2)-(63λ)-190=0
Step 7.1.1.6
Factor -1 out of -(λ3+14λ2)-(63λ).
-(λ3+14λ2+63λ)-190=0
Step 7.1.1.7
Factor -1 out of -(λ3+14λ2+63λ)-1(90).
-(λ3+14λ2+63λ+90)=0
-(λ3+14λ2+63λ+90)=0
Step 7.1.2
Factor λ3+14λ2+63λ+90 using the rational roots test.
Tap for more steps...
Step 7.1.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1,±90,±2,±45,±3,±30,±5,±18,±6,±15,±9,±10
q=±1
Step 7.1.2.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±90,±2,±45,±3,±30,±5,±18,±6,±15,±9,±10
Step 7.1.2.3
Substitute -3 and simplify the expression. In this case, the expression is equal to 0 so -3 is a root of the polynomial.
Tap for more steps...
Step 7.1.2.3.1
Substitute -3 into the polynomial.
(-3)3+14(-3)2+63-3+90
Step 7.1.2.3.2
Raise -3 to the power of 3.
-27+14(-3)2+63-3+90
Step 7.1.2.3.3
Raise -3 to the power of 2.
-27+149+63-3+90
Step 7.1.2.3.4
Multiply 14 by 9.
-27+126+63-3+90
Step 7.1.2.3.5
Add -27 and 126.
99+63-3+90
Step 7.1.2.3.6
Multiply 63 by -3.
99-189+90
Step 7.1.2.3.7
Subtract 189 from 99.
-90+90
Step 7.1.2.3.8
Add -90 and 90.
0
0
Step 7.1.2.4
Since -3 is a known root, divide the polynomial by λ+3 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
λ3+14λ2+63λ+90λ+3
Step 7.1.2.5
Divide λ3+14λ2+63λ+90 by λ+3.
Tap for more steps...
Step 7.1.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
λ+3λ3+14λ2+63λ+90
Step 7.1.2.5.2
Divide the highest order term in the dividend λ3 by the highest order term in divisor λ.
λ2
λ+3λ3+14λ2+63λ+90
Step 7.1.2.5.3
Multiply the new quotient term by the divisor.
λ2
λ+3λ3+14λ2+63λ+90
+λ3+3λ2
Step 7.1.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in λ3+3λ2
λ2
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
Step 7.1.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
λ2
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2
Step 7.1.2.5.6
Pull the next terms from the original dividend down into the current dividend.
λ2
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
Step 7.1.2.5.7
Divide the highest order term in the dividend 11λ2 by the highest order term in divisor λ.
λ2+11λ
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
Step 7.1.2.5.8
Multiply the new quotient term by the divisor.
λ2+11λ
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
+11λ2+33λ
Step 7.1.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in 11λ2+33λ
λ2+11λ
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
-11λ2-33λ
Step 7.1.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
λ2+11λ
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
-11λ2-33λ
+30λ
Step 7.1.2.5.11
Pull the next terms from the original dividend down into the current dividend.
λ2+11λ
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
-11λ2-33λ
+30λ+90
Step 7.1.2.5.12
Divide the highest order term in the dividend 30λ by the highest order term in divisor λ.
λ2+11λ+30
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
-11λ2-33λ
+30λ+90
Step 7.1.2.5.13
Multiply the new quotient term by the divisor.
λ2+11λ+30
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
-11λ2-33λ
+30λ+90
+30λ+90
Step 7.1.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in 30λ+90
λ2+11λ+30
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
-11λ2-33λ
+30λ+90
-30λ-90
Step 7.1.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
λ2+11λ+30
λ+3λ3+14λ2+63λ+90
-λ3-3λ2
+11λ2+63λ
-11λ2-33λ
+30λ+90
-30λ-90
0
Step 7.1.2.5.16
Since the remander is 0, the final answer is the quotient.
λ2+11λ+30
λ2+11λ+30
Step 7.1.2.6
Write λ3+14λ2+63λ+90 as a set of factors.
-((λ+3)(λ2+11λ+30))=0
-((λ+3)(λ2+11λ+30))=0
Step 7.1.3
Factor.
Tap for more steps...
Step 7.1.3.1
Factor λ2+11λ+30 using the AC method.
Tap for more steps...
Step 7.1.3.1.1
Factor λ2+11λ+30 using the AC method.
Tap for more steps...
Step 7.1.3.1.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 30 and whose sum is 11.
5,6
Step 7.1.3.1.1.2
Write the factored form using these integers.
-((λ+3)((λ+5)(λ+6)))=0
-((λ+3)((λ+5)(λ+6)))=0
Step 7.1.3.1.2
Remove unnecessary parentheses.
-((λ+3)(λ+5)(λ+6))=0
-((λ+3)(λ+5)(λ+6))=0
Step 7.1.3.2
Remove unnecessary parentheses.
-(λ+3)(λ+5)(λ+6)=0
-(λ+3)(λ+5)(λ+6)=0
-(λ+3)(λ+5)(λ+6)=0
Step 7.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
λ+3=0
λ+5=0
λ+6=0
Step 7.3
Set λ+3 equal to 0 and solve for λ.
Tap for more steps...
Step 7.3.1
Set λ+3 equal to 0.
λ+3=0
Step 7.3.2
Subtract 3 from both sides of the equation.
λ=-3
λ=-3
Step 7.4
Set λ+5 equal to 0 and solve for λ.
Tap for more steps...
Step 7.4.1
Set λ+5 equal to 0.
λ+5=0
Step 7.4.2
Subtract 5 from both sides of the equation.
λ=-5
λ=-5
Step 7.5
Set λ+6 equal to 0 and solve for λ.
Tap for more steps...
Step 7.5.1
Set λ+6 equal to 0.
λ+6=0
Step 7.5.2
Subtract 6 from both sides of the equation.
λ=-6
λ=-6
Step 7.6
The final solution is all the values that make -(λ+3)(λ+5)(λ+6)=0 true.
λ=-3,-5,-6
λ=-3,-5,-6
 [x2  12  π  xdx ]