Linear Algebra Examples

Solve Using an Inverse Matrix 26a+8b=28 , 8a+3b=9
26a+8b=2826a+8b=28 , 8a+3b=98a+3b=9
Step 1
Find the AX=BAX=B from the system of equations.
[26883][ab]=[289][26883][ab]=[289]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 2.2
Find the determinant.
Tap for more steps...
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
263-8826388
Step 2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply 2626 by 33.
78-887888
Step 2.2.2.1.2
Multiply -88 by 88.
78-647864
78-647864
Step 2.2.2.2
Subtract 6464 from 7878.
1414
1414
1414
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
114[3-8-826]114[38826]
Step 2.5
Multiply 114114 by each element of the matrix.
[1143114-8114-811426][11431148114811426]
Step 2.6
Simplify each element in the matrix.
Tap for more steps...
Step 2.6.1
Combine 114114 and 33.
[314114-8114-811426][3141148114811426]
Step 2.6.2
Cancel the common factor of 22.
Tap for more steps...
Step 2.6.2.1
Factor 22 out of 1414.
[31412(7)-8114-811426]31412(7)8114811426
Step 2.6.2.2
Factor 22 out of -88.
[314127(2-4)114-811426][314127(24)114811426]
Step 2.6.2.3
Cancel the common factor.
[314127(2-4)114-811426]
Step 2.6.2.4
Rewrite the expression.
[31417-4114-811426]
[31417-4114-811426]
Step 2.6.3
Combine 17 and -4.
[314-47114-811426]
Step 2.6.4
Move the negative in front of the fraction.
[314-47114-811426]
Step 2.6.5
Cancel the common factor of 2.
Tap for more steps...
Step 2.6.5.1
Factor 2 out of 14.
[314-4712(7)-811426]
Step 2.6.5.2
Factor 2 out of -8.
[314-47127(2-4)11426]
Step 2.6.5.3
Cancel the common factor.
[314-47127(2-4)11426]
Step 2.6.5.4
Rewrite the expression.
[314-4717-411426]
[314-4717-411426]
Step 2.6.6
Combine 17 and -4.
[314-47-4711426]
Step 2.6.7
Move the negative in front of the fraction.
[314-47-4711426]
Step 2.6.8
Cancel the common factor of 2.
Tap for more steps...
Step 2.6.8.1
Factor 2 out of 14.
[314-47-4712(7)26]
Step 2.6.8.2
Factor 2 out of 26.
[314-47-47127(213)]
Step 2.6.8.3
Cancel the common factor.
[314-47-47127(213)]
Step 2.6.8.4
Rewrite the expression.
[314-47-471713]
[314-47-471713]
Step 2.6.9
Combine 17 and 13.
[314-47-47137]
[314-47-47137]
[314-47-47137]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([314-47-47137][26883])[ab]=[314-47-47137][289]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. AA-1=1.
[ab]=[314-47-47137][289]
Step 5
Multiply [314-47-47137][289].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×2 and the second matrix is 2×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[31428-479-4728+1379]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
Tap for more steps...
Step 5.3.1
Multiply -16 by 7.
[67-112+1177]
Step 5.3.2
Add -112 and 117.
[6757]
[6757]
[6757]
Step 6
Simplify the left and right side.
[ab]=[6757]
Step 7
Find the solution.
a=67
b=57
 [x2  12  π  xdx ]