Enter a problem...
Linear Algebra Examples
2x+3y=-162x+3y=−16 , 5x-10y=205x−10y=20
Step 1
Find the AX=BAX=B from the system of equations.
[235-10]⋅[xy]=[-1620][235−10]⋅[xy]=[−1620]
Step 2
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 2.2
Find the determinant.
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
2⋅-10-5⋅32⋅−10−5⋅3
Step 2.2.2
Simplify the determinant.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Multiply 22 by -10−10.
-20-5⋅3−20−5⋅3
Step 2.2.2.1.2
Multiply -5−5 by 33.
-20-15−20−15
-20-15−20−15
Step 2.2.2.2
Subtract 1515 from -20−20.
-35−35
-35−35
-35−35
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1-35[-10-3-52]1−35[−10−3−52]
Step 2.5
Move the negative in front of the fraction.
-135[-10-3-52]−135[−10−3−52]
Step 2.6
Multiply -135−135 by each element of the matrix.
[-135⋅-10-135⋅-3-135⋅-5-135⋅2][−135⋅−10−135⋅−3−135⋅−5−135⋅2]
Step 2.7
Simplify each element in the matrix.
Step 2.7.1
Cancel the common factor of 55.
Step 2.7.1.1
Move the leading negative in -135−135 into the numerator.
[-135⋅-10-135⋅-3-135⋅-5-135⋅2][−135⋅−10−135⋅−3−135⋅−5−135⋅2]
Step 2.7.1.2
Factor 55 out of 3535.
[-15(7)⋅-10-135⋅-3-135⋅-5-135⋅2]⎡⎣−15(7)⋅−10−135⋅−3−135⋅−5−135⋅2⎤⎦
Step 2.7.1.3
Factor 55 out of -10−10.
[-15⋅7⋅(5⋅-2)-135⋅-3-135⋅-5-135⋅2][−15⋅7⋅(5⋅−2)−135⋅−3−135⋅−5−135⋅2]
Step 2.7.1.4
Cancel the common factor.
[-15⋅7⋅(5⋅-2)-135⋅-3-135⋅-5-135⋅2]
Step 2.7.1.5
Rewrite the expression.
[-17⋅-2-135⋅-3-135⋅-5-135⋅2]
[-17⋅-2-135⋅-3-135⋅-5-135⋅2]
Step 2.7.2
Combine -17 and -2.
[--27-135⋅-3-135⋅-5-135⋅2]
Step 2.7.3
Multiply -1 by -2.
[27-135⋅-3-135⋅-5-135⋅2]
Step 2.7.4
Multiply -135⋅-3.
Step 2.7.4.1
Multiply -3 by -1.
[273(135)-135⋅-5-135⋅2]
Step 2.7.4.2
Combine 3 and 135.
[27335-135⋅-5-135⋅2]
[27335-135⋅-5-135⋅2]
Step 2.7.5
Cancel the common factor of 5.
Step 2.7.5.1
Move the leading negative in -135 into the numerator.
[27335-135⋅-5-135⋅2]
Step 2.7.5.2
Factor 5 out of 35.
[27335-15(7)⋅-5-135⋅2]
Step 2.7.5.3
Factor 5 out of -5.
[27335-15⋅7⋅(5⋅-1)-135⋅2]
Step 2.7.5.4
Cancel the common factor.
[27335-15⋅7⋅(5⋅-1)-135⋅2]
Step 2.7.5.5
Rewrite the expression.
[27335-17⋅-1-135⋅2]
[27335-17⋅-1-135⋅2]
Step 2.7.6
Combine -17 and -1.
[27335--17-135⋅2]
Step 2.7.7
Multiply -1 by -1.
[2733517-135⋅2]
Step 2.7.8
Multiply -135⋅2.
Step 2.7.8.1
Multiply 2 by -1.
[2733517-2(135)]
Step 2.7.8.2
Combine -2 and 135.
[2733517-235]
[2733517-235]
Step 2.7.9
Move the negative in front of the fraction.
[2733517-235]
[2733517-235]
[2733517-235]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([2733517-235]⋅[235-10])⋅[xy]=[2733517-235]⋅[-1620]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. A⋅A-1=1.
[xy]=[2733517-235]⋅[-1620]
Step 5
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×2 and the second matrix is 2×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[27⋅-16+335⋅2017⋅-16-235⋅20]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[-207-247]
[-207-247]
Step 6
Simplify the left and right side.
[xy]=[-207-247]
Step 7
Find the solution.
x=-207
y=-247