Enter a problem...
Linear Algebra Examples
2x+y=42x+y=4 , -6x-3y=-12−6x−3y=−12
Step 1
Find the AX=BAX=B from the system of equations.
[21-6-3]⋅[xy]=[4-12][21−6−3]⋅[xy]=[4−12]
Step 2
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[d−b−ca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A−1=1|A|[d−b−ca]
Find the determinant of [21-6-3][21−6−3].
These are both valid notations for the determinant of a matrix.
determinant[21-6-3]=|21-6-3|determinant[21−6−3]=∣∣∣21−6−3∣∣∣
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
(2)(-3)+6⋅1(2)(−3)+6⋅1
Simplify the determinant.
Simplify each term.
Multiply 22 by -3−3.
-6+6⋅1−6+6⋅1
Multiply 66 by 11.
-6+6−6+6
-6+6−6+6
Add -6−6 and 66.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[-3-(1)-(-6)2]10[−3−(1)−(−6)2]
Simplify each element in the matrix.
Rearrange -(1)−(1).
10[-3-1-(-6)2]10[−3−1−(−6)2]
Rearrange -(-6)−(−6).
10[-3-162]10[−3−162]
10[-3-162]10[−3−162]
Multiply 1010 by each element of the matrix.
[10⋅-310⋅-110⋅610⋅2][10⋅−310⋅−110⋅610⋅2]
Rearrange 10⋅-310⋅−3.
[Undefined10⋅-110⋅610⋅2][Undefined10⋅−110⋅610⋅2]
Since the matrix is undefined, it cannot be solved.
UndefinedUndefined
Undefined