Linear Algebra Examples

Solve Using an Inverse Matrix 2x+y=4 , -6x-3y=-12
2x+y=42x+y=4 , -6x-3y=-126x3y=12
Step 1
Find the AX=BAX=B from the system of equations.
[21-6-3][xy]=[4-12][2163][xy]=[412]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[dbca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A1=1|A|[dbca]
Find the determinant of [21-6-3][2163].
Tap for more steps...
These are both valid notations for the determinant of a matrix.
determinant[21-6-3]=|21-6-3|determinant[2163]=2163
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
(2)(-3)+61(2)(3)+61
Simplify the determinant.
Tap for more steps...
Simplify each term.
Tap for more steps...
Multiply 22 by -33.
-6+616+61
Multiply 66 by 11.
-6+66+6
-6+66+6
Add -66 and 66.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[-3-(1)-(-6)2]10[3(1)(6)2]
Simplify each element in the matrix.
Tap for more steps...
Rearrange -(1)(1).
10[-3-1-(-6)2]10[31(6)2]
Rearrange -(-6)(6).
10[-3-162]10[3162]
10[-3-162]10[3162]
Multiply 1010 by each element of the matrix.
[10-310-1106102][103101106102]
Rearrange 10-3103.
[Undefined10-1106102][Undefined101106102]
Since the matrix is undefined, it cannot be solved.
UndefinedUndefined
Undefined
 [x2  12  π  xdx ]  x2  12  π  xdx