Linear Algebra Examples

Solve Using an Inverse Matrix 8x+6y=-4 , 9x-6y=-81
8x+6y=-48x+6y=4 , 9x-6y=-819x6y=81
Step 1
Find the AX=BAX=B from the system of equations.
[869-6][xy]=[-4-81][8696][xy]=[481]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 2.2
Find the determinant.
Tap for more steps...
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
8-6-968696
Step 2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply 88 by -66.
-48-964896
Step 2.2.2.1.2
Multiply -99 by 66.
-48-544854
-48-544854
Step 2.2.2.2
Subtract 5454 from -4848.
-102102
-102102
-102102
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1-102[-6-6-98]1102[6698]
Step 2.5
Move the negative in front of the fraction.
-1102[-6-6-98]1102[6698]
Step 2.6
Multiply -11021102 by each element of the matrix.
[-1102-6-1102-6-1102-9-11028][11026110261102911028]
Step 2.7
Simplify each element in the matrix.
Tap for more steps...
Step 2.7.1
Cancel the common factor of 66.
Tap for more steps...
Step 2.7.1.1
Move the leading negative in -11021102 into the numerator.
[-1102-6-1102-6-1102-9-11028][11026110261102911028]
Step 2.7.1.2
Factor 66 out of 102102.
[-16(17)-6-1102-6-1102-9-11028]16(17)6110261102911028
Step 2.7.1.3
Factor 66 out of -66.
[-1617(6-1)-1102-6-1102-9-11028][1617(61)110261102911028]
Step 2.7.1.4
Cancel the common factor.
[-1617(6-1)-1102-6-1102-9-11028]
Step 2.7.1.5
Rewrite the expression.
[-117-1-1102-6-1102-9-11028]
[-117-1-1102-6-1102-9-11028]
Step 2.7.2
Combine -117 and -1.
[--117-1102-6-1102-9-11028]
Step 2.7.3
Multiply -1 by -1.
[117-1102-6-1102-9-11028]
Step 2.7.4
Cancel the common factor of 6.
Tap for more steps...
Step 2.7.4.1
Move the leading negative in -1102 into the numerator.
[117-1102-6-1102-9-11028]
Step 2.7.4.2
Factor 6 out of 102.
[117-16(17)-6-1102-9-11028]
Step 2.7.4.3
Factor 6 out of -6.
[117-1617(6-1)-1102-9-11028]
Step 2.7.4.4
Cancel the common factor.
[117-1617(6-1)-1102-9-11028]
Step 2.7.4.5
Rewrite the expression.
[117-117-1-1102-9-11028]
[117-117-1-1102-9-11028]
Step 2.7.5
Combine -117 and -1.
[117--117-1102-9-11028]
Step 2.7.6
Multiply -1 by -1.
[117117-1102-9-11028]
Step 2.7.7
Cancel the common factor of 3.
Tap for more steps...
Step 2.7.7.1
Move the leading negative in -1102 into the numerator.
[117117-1102-9-11028]
Step 2.7.7.2
Factor 3 out of 102.
[117117-13(34)-9-11028]
Step 2.7.7.3
Factor 3 out of -9.
[117117-1334(3-3)-11028]
Step 2.7.7.4
Cancel the common factor.
[117117-1334(3-3)-11028]
Step 2.7.7.5
Rewrite the expression.
[117117-134-3-11028]
[117117-134-3-11028]
Step 2.7.8
Combine -134 and -3.
[117117--334-11028]
Step 2.7.9
Multiply -1 by -3.
[117117334-11028]
Step 2.7.10
Cancel the common factor of 2.
Tap for more steps...
Step 2.7.10.1
Move the leading negative in -1102 into the numerator.
[117117334-11028]
Step 2.7.10.2
Factor 2 out of 102.
[117117334-12(51)8]
Step 2.7.10.3
Factor 2 out of 8.
[117117334-1251(24)]
Step 2.7.10.4
Cancel the common factor.
[117117334-1251(24)]
Step 2.7.10.5
Rewrite the expression.
[117117334-1514]
[117117334-1514]
Step 2.7.11
Combine -151 and 4.
[117117334-1451]
Step 2.7.12
Multiply -1 by 4.
[117117334-451]
Step 2.7.13
Move the negative in front of the fraction.
[117117334-451]
[117117334-451]
[117117334-451]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([117117334-451][869-6])[xy]=[117117334-451][-4-81]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. AA-1=1.
[xy]=[117117334-451][-4-81]
Step 5
Multiply [117117334-451][-4-81].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×2 and the second matrix is 2×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[117-4+117-81334-4-451-81]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[-56]
[-56]
Step 6
Simplify the left and right side.
[xy]=[-56]
Step 7
Find the solution.
x=-5
y=6
 [x2  12  π  xdx ]