Enter a problem...
Linear Algebra Examples
x+y+z=12x+y+z=12 , 2x-3y+2z=42x−3y+2z=4 , x+z=2yx+z=2y
Step 1
Find the AX=BAX=B from the system of equations.
[1112-321-21]⋅[xyz]=[1240]⎡⎢⎣1112−321−21⎤⎥⎦⋅⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣1240⎤⎥⎦
Step 2
Set up a matrix that is broken into two pieces of equal size. On the left side, fill in the elements of the original matrix. On the right side, fill in elements of the identity matrix. In order to find the inverse matrix, use row operations to convert the left side into the identity matrix. After this is complete, the inverse of the original matrix will be on the right side of the double matrix.
[1111002-320101-21001]⎡⎢⎣1111002−320101−21001⎤⎥⎦
Perform the row operation R2=-2⋅R1+R2R2=−2⋅R1+R2 on R2R2 (row 22) in order to convert some elements in the row to 00.
Replace R2R2 (row 22) with the row operation R2=-2⋅R1+R2R2=−2⋅R1+R2 in order to convert some elements in the row to the desired value 00.
[111100-2⋅R1+R2-2⋅R1+R2-2⋅R1+R2-2⋅R1+R2-2⋅R1+R2-2⋅R1+R21-21001]⎡⎢⎣111100−2⋅R1+R2−2⋅R1+R2−2⋅R1+R2−2⋅R1+R2−2⋅R1+R2−2⋅R1+R21−21001⎤⎥⎦
R2=-2⋅R1+R2R2=−2⋅R1+R2
Replace R2R2 (row 22) with the actual values of the elements for the row operation R2=-2⋅R1+R2R2=−2⋅R1+R2.
[111100(-2)⋅(1)+2(-2)⋅(1)-3(-2)⋅(1)+2(-2)⋅(1)+0(-2)⋅(0)+1(-2)⋅(0)+01-21001]⎡⎢⎣111100(−2)⋅(1)+2(−2)⋅(1)−3(−2)⋅(1)+2(−2)⋅(1)+0(−2)⋅(0)+1(−2)⋅(0)+01−21001⎤⎥⎦
R2=-2⋅R1+R2R2=−2⋅R1+R2
Simplify R2R2 (row 22).
[1111000-50-2101-21001]⎡⎢⎣1111000−50−2101−21001⎤⎥⎦
[1111000-50-2101-21001]⎡⎢⎣1111000−50−2101−21001⎤⎥⎦
Perform the row operation R3=-1⋅R1+R3R3=−1⋅R1+R3 on R3R3 (row 33) in order to convert some elements in the row to 00.
Replace R3R3 (row 33) with the row operation R3=-1⋅R1+R3R3=−1⋅R1+R3 in order to convert some elements in the row to the desired value 00.
[1111000-50-210-1⋅R1+R3-1⋅R1+R3-1⋅R1+R3-1⋅R1+R3-1⋅R1+R3-1⋅R1+R3]⎡⎢⎣1111000−50−210−1⋅R1+R3−1⋅R1+R3−1⋅R1+R3−1⋅R1+R3−1⋅R1+R3−1⋅R1+R3⎤⎥⎦
R3=-1⋅R1+R3R3=−1⋅R1+R3
Replace R3R3 (row 33) with the actual values of the elements for the row operation R3=-1⋅R1+R3R3=−1⋅R1+R3.
[1111000-50-210(-1)⋅(1)+1(-1)⋅(1)-2(-1)⋅(1)+1(-1)⋅(1)+0(-1)⋅(0)+0(-1)⋅(0)+1]⎡⎢⎣1111000−50−210(−1)⋅(1)+1(−1)⋅(1)−2(−1)⋅(1)+1(−1)⋅(1)+0(−1)⋅(0)+0(−1)⋅(0)+1⎤⎥⎦
R3=-1⋅R1+R3R3=−1⋅R1+R3
Simplify R3R3 (row 33).
[1111000-50-2100-30-101]⎡⎢⎣1111000−50−2100−30−101⎤⎥⎦
[1111000-50-2100-30-101]⎡⎢⎣1111000−50−2100−30−101⎤⎥⎦
Perform the row operation R2=-15R2R2=−15R2 on R2R2 (row 22) in order to convert some elements in the row to 11.
Replace R2R2 (row 22) with the row operation R2=-15R2R2=−15R2 in order to convert some elements in the row to the desired value 11.
[111100-15R2-15R2-15R2-15R2-15R2-15R20-30-101]⎡⎢
⎢⎣111100−15R2−15R2−15R2−15R2−15R2−15R20−30−101⎤⎥
⎥⎦
R2=-15R2R2=−15R2
Replace R2R2 (row 22) with the actual values of the elements for the row operation R2=-15R2R2=−15R2.
[111100(-15)⋅(0)(-15)⋅(-5)(-15)⋅(0)(-15)⋅(-2)(-15)⋅(1)(-15)⋅(0)0-30-101]⎡⎢
⎢
⎢⎣111100(−15)⋅(0)(−15)⋅(−5)(−15)⋅(0)(−15)⋅(−2)(−15)⋅(1)(−15)⋅(0)0−30−101⎤⎥
⎥
⎥⎦
R2=-15R2R2=−15R2
Simplify R2R2 (row 22).
[11110001025-1500-30-101]⎡⎢
⎢⎣11110001025−1500−30−101⎤⎥
⎥⎦
[11110001025-1500-30-101]⎡⎢
⎢⎣11110001025−1500−30−101⎤⎥
⎥⎦
Perform the row operation R1=-1⋅R2+R1R1=−1⋅R2+R1 on R1R1 (row 11) in order to convert some elements in the row to 00.
Replace R1R1 (row 11) with the row operation R1=-1⋅R2+R1R1=−1⋅R2+R1 in order to convert some elements in the row to the desired value 00.
[-1⋅R2+R1-1⋅R2+R1-1⋅R2+R1-1⋅R2+R1-1⋅R2+R1-1⋅R2+R101025-1500-30-101]⎡⎢
⎢⎣−1⋅R2+R1−1⋅R2+R1−1⋅R2+R1−1⋅R2+R1−1⋅R2+R1−1⋅R2+R101025−1500−30−101⎤⎥
⎥⎦
R1=-1⋅R2+R1R1=−1⋅R2+R1
Replace R1R1 (row 11) with the actual values of the elements for the row operation R1=-1⋅R2+R1R1=−1⋅R2+R1.
[(-1)⋅(0)+1(-1)⋅(1)+1(-1)⋅(0)+1(-1)⋅(25)+1(-1)⋅(-15)+0(-1)⋅(0)+001025-1500-30-101]⎡⎢
⎢
⎢⎣(−1)⋅(0)+1(−1)⋅(1)+1(−1)⋅(0)+1(−1)⋅(25)+1(−1)⋅(−15)+0(−1)⋅(0)+001025−1500−30−101⎤⎥
⎥
⎥⎦
R1=-1⋅R2+R1R1=−1⋅R2+R1
Simplify R1R1 (row 11).
[1013515001025-1500-30-101]⎡⎢
⎢⎣1013515001025−1500−30−101⎤⎥
⎥⎦
[1013515001025-1500-30-101]⎡⎢
⎢⎣1013515001025−1500−30−101⎤⎥
⎥⎦
Perform the row operation R3=3⋅R2+R3R3=3⋅R2+R3 on R3R3 (row 33) in order to convert some elements in the row to 00.
Replace R3R3 (row 33) with the row operation R3=3⋅R2+R3R3=3⋅R2+R3 in order to convert some elements in the row to the desired value 00.
[1013515001025-1503⋅R2+R33⋅R2+R33⋅R2+R33⋅R2+R33⋅R2+R33⋅R2+R3]⎡⎢
⎢⎣1013515001025−1503⋅R2+R33⋅R2+R33⋅R2+R33⋅R2+R33⋅R2+R33⋅R2+R3⎤⎥
⎥⎦
R3=3⋅R2+R3R3=3⋅R2+R3
Replace R3R3 (row 33) with the actual values of the elements for the row operation R3=3⋅R2+R3R3=3⋅R2+R3.
[1013515001025-150(3)⋅(0)+0(3)⋅(1)-3(3)⋅(0)+0(3)⋅(25)-1(3)⋅(-15)+0(3)⋅(0)+1]⎡⎢
⎢
⎢
⎢⎣1013515001025−150(3)⋅(0)+0(3)⋅(1)−3(3)⋅(0)+0(3)⋅(25)−1(3)⋅(−15)+0(3)⋅(0)+1⎤⎥
⎥
⎥
⎥⎦
R3=3⋅R2+R3R3=3⋅R2+R3
Simplify R3R3 (row 33).
[1013515001025-15000015-351]⎡⎢
⎢
⎢⎣1013515001025−15000015−351⎤⎥
⎥
⎥⎦
[1013515001025-15000015-351]⎡⎢
⎢
⎢⎣1013515001025−15000015−351⎤⎥
⎥
⎥⎦
Perform the row operation R3=5⋅R3R3=5⋅R3 on R3R3 (row 33) in order to convert some elements in the row to 11.
Replace R3R3 (row 33) with the row operation R3=5⋅R3R3=5⋅R3 in order to convert some elements in the row to the desired value 11.
[1013515001025-1505⋅R35⋅R35⋅R35⋅R35⋅R35⋅R3]⎡⎢
⎢⎣1013515001025−1505⋅R35⋅R35⋅R35⋅R35⋅R35⋅R3⎤⎥
⎥⎦
R3=5⋅R3R3=5⋅R3
Replace R3R3 (row 33) with the actual values of the elements for the row operation R3=5⋅R3R3=5⋅R3.
[1013515001025-150(5)⋅(0)(5)⋅(0)(5)⋅(0)(5)⋅(15)(5)⋅(-35)(5)⋅(1)]⎡⎢
⎢
⎢
⎢⎣1013515001025−150(5)⋅(0)(5)⋅(0)(5)⋅(0)(5)⋅(15)(5)⋅(−35)(5)⋅(1)⎤⎥
⎥
⎥
⎥⎦
R3=5⋅R3R3=5⋅R3
Simplify R3R3 (row 33).
[1013515001025-1500001-35]⎡⎢
⎢⎣1013515001025−1500001−35⎤⎥
⎥⎦
[1013515001025-1500001-35]⎡⎢
⎢⎣1013515001025−1500001−35⎤⎥
⎥⎦
Perform the row operation R1=-35R3+R1R1=−35R3+R1 on R1R1 (row 11) in order to convert some elements in the row to 00.
Replace R1R1 (row 11) with the row operation R1=-35R3+R1R1=−35R3+R1 in order to convert some elements in the row to the desired value 00.
[-35R3+R1-35R3+R1-35R3+R1-35R3+R1-35R3+R1-35R3+R101025-1500001-35]⎡⎢
⎢⎣−35R3+R1−35R3+R1−35R3+R1−35R3+R1−35R3+R1−35R3+R101025−1500001−35⎤⎥
⎥⎦
R1=-35R3+R1R1=−35R3+R1
Replace R1R1 (row 11) with the actual values of the elements for the row operation R1=-35R3+R1R1=−35R3+R1.
[(-35)⋅(0)+1(-35)⋅(0)+0(-35)⋅(0)+1(-35)⋅(1)+35(-35)⋅(-3)+15(-35)⋅(5)+001025-1500001-35]⎡⎢
⎢
⎢⎣(−35)⋅(0)+1(−35)⋅(0)+0(−35)⋅(0)+1(−35)⋅(1)+35(−35)⋅(−3)+15(−35)⋅(5)+001025−1500001−35⎤⎥
⎥
⎥⎦
R1=-35R3+R1R1=−35R3+R1
Simplify R1R1 (row 11).
[10102-301025-1500001-35]⎡⎢
⎢⎣10102−301025−1500001−35⎤⎥
⎥⎦
[10102-301025-1500001-35]⎡⎢
⎢⎣10102−301025−1500001−35⎤⎥
⎥⎦
Perform the row operation R2=-25R3+R2R2=−25R3+R2 on R2R2 (row 22) in order to convert some elements in the row to 00.
Replace R2R2 (row 22) with the row operation R2=-25R3+R2R2=−25R3+R2 in order to convert some elements in the row to the desired value 00.
[10102-3-25R3+R2-25R3+R2-25R3+R2-25R3+R2-25R3+R2-25R3+R20001-35]⎡⎢
⎢⎣10102−3−25R3+R2−25R3+R2−25R3+R2−25R3+R2−25R3+R2−25R3+R20001−35⎤⎥
⎥⎦
R2=-25R3+R2R2=−25R3+R2
Replace R2R2 (row 22) with the actual values of the elements for the row operation R2=-25R3+R2R2=−25R3+R2.
[10102-3(-25)⋅(0)+0(-25)⋅(0)+1(-25)⋅(0)+0(-25)⋅(1)+25(-25)⋅(-3)-15(-25)⋅(5)+00001-35]⎡⎢
⎢
⎢⎣10102−3(−25)⋅(0)+0(−25)⋅(0)+1(−25)⋅(0)+0(−25)⋅(1)+25(−25)⋅(−3)−15(−25)⋅(5)+00001−35⎤⎥
⎥
⎥⎦
R2=-25R3+R2R2=−25R3+R2
Simplify R2R2 (row 22).
[10102-301001-20001-35]⎡⎢⎣10102−301001−20001−35⎤⎥⎦
[10102-301001-20001-35]⎡⎢⎣10102−301001−20001−35⎤⎥⎦
Since the determinant of the matrix is zero, there is no inverse.
No inverse
No inverse
Step 3
Since the matrix has no inverse, it cannot be solved using the inverse matrix.
No solution