Enter a problem...
Linear Algebra Examples
x+2y-z=4x+2y−z=4 , 2x+y+z=-22x+y+z=−2 , x+2y+z=2x+2y+z=2
Step 1
Find the AX=BAX=B from the system of equations.
[12-1211121]⋅[xyz]=[4-22]⎡⎢⎣12−1211121⎤⎥⎦⋅⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣4−22⎤⎥⎦
Step 2
Step 2.1
Find the determinant.
Step 2.1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Step 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 2.1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|1121|∣∣∣1121∣∣∣
Step 2.1.1.4
Multiply element a11a11 by its cofactor.
1|1121|1∣∣∣1121∣∣∣
Step 2.1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2111|∣∣∣2111∣∣∣
Step 2.1.1.6
Multiply element a12a12 by its cofactor.
-2|2111|−2∣∣∣2111∣∣∣
Step 2.1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|2112|∣∣∣2112∣∣∣
Step 2.1.1.8
Multiply element a13a13 by its cofactor.
-1|2112|−1∣∣∣2112∣∣∣
Step 2.1.1.9
Add the terms together.
1|1121|-2|2111|-1|2112|1∣∣∣1121∣∣∣−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
1|1121|-2|2111|-1|2112|1∣∣∣1121∣∣∣−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
Step 2.1.2
Evaluate |1121|∣∣∣1121∣∣∣.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(1⋅1-2⋅1)-2|2111|-1|2112|1(1⋅1−2⋅1)−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 11 by 11.
1(1-2⋅1)-2|2111|-1|2112|1(1−2⋅1)−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
Step 2.1.2.2.1.2
Multiply -2−2 by 11.
1(1-2)-2|2111|-1|2112|1(1−2)−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
1(1-2)-2|2111|-1|2112|1(1−2)−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
Step 2.1.2.2.2
Subtract 22 from 11.
1⋅-1-2|2111|-1|2112|1⋅−1−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
1⋅-1-2|2111|-1|2112|1⋅−1−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
1⋅-1-2|2111|-1|2112|1⋅−1−2∣∣∣2111∣∣∣−1∣∣∣2112∣∣∣
Step 2.1.3
Evaluate |2111|∣∣∣2111∣∣∣.
Step 2.1.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-1-2(2⋅1-1⋅1)-1|2112|1⋅−1−2(2⋅1−1⋅1)−1∣∣∣2112∣∣∣
Step 2.1.3.2
Simplify the determinant.
Step 2.1.3.2.1
Simplify each term.
Step 2.1.3.2.1.1
Multiply 22 by 11.
1⋅-1-2(2-1⋅1)-1|2112|1⋅−1−2(2−1⋅1)−1∣∣∣2112∣∣∣
Step 2.1.3.2.1.2
Multiply -1−1 by 11.
1⋅-1-2(2-1)-1|2112|1⋅−1−2(2−1)−1∣∣∣2112∣∣∣
1⋅-1-2(2-1)-1|2112|1⋅−1−2(2−1)−1∣∣∣2112∣∣∣
Step 2.1.3.2.2
Subtract 11 from 22.
1⋅-1-2⋅1-1|2112|1⋅−1−2⋅1−1∣∣∣2112∣∣∣
1⋅-1-2⋅1-1|2112|1⋅−1−2⋅1−1∣∣∣2112∣∣∣
1⋅-1-2⋅1-1|2112|1⋅−1−2⋅1−1∣∣∣2112∣∣∣
Step 2.1.4
Evaluate |2112|∣∣∣2112∣∣∣.
Step 2.1.4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅-1-2⋅1-1(2⋅2-1⋅1)1⋅−1−2⋅1−1(2⋅2−1⋅1)
Step 2.1.4.2
Simplify the determinant.
Step 2.1.4.2.1
Simplify each term.
Step 2.1.4.2.1.1
Multiply 22 by 22.
1⋅-1-2⋅1-1(4-1⋅1)1⋅−1−2⋅1−1(4−1⋅1)
Step 2.1.4.2.1.2
Multiply -1−1 by 11.
1⋅-1-2⋅1-1(4-1)1⋅−1−2⋅1−1(4−1)
1⋅-1-2⋅1-1(4-1)1⋅−1−2⋅1−1(4−1)
Step 2.1.4.2.2
Subtract 11 from 44.
1⋅-1-2⋅1-1⋅31⋅−1−2⋅1−1⋅3
1⋅-1-2⋅1-1⋅31⋅−1−2⋅1−1⋅3
1⋅-1-2⋅1-1⋅31⋅−1−2⋅1−1⋅3
Step 2.1.5
Simplify the determinant.
Step 2.1.5.1
Simplify each term.
Step 2.1.5.1.1
Multiply -1−1 by 11.
-1-2⋅1-1⋅3−1−2⋅1−1⋅3
Step 2.1.5.1.2
Multiply -2−2 by 11.
-1-2-1⋅3−1−2−1⋅3
Step 2.1.5.1.3
Multiply -1−1 by 33.
-1-2-3−1−2−3
-1-2-3−1−2−3
Step 2.1.5.2
Subtract 22 from -1−1.
-3-3−3−3
Step 2.1.5.3
Subtract 33 from -3−3.
-6−6
-6−6
-6−6
Step 2.2
Since the determinant is non-zero, the inverse exists.
Step 2.3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[12-1100211010121001]⎡⎢⎣12−1100211010121001⎤⎥⎦
Step 2.4
Find the reduced row echelon form.
Step 2.4.1
Perform the row operation R2=R2-2R1R2=R2−2R1 to make the entry at 2,12,1 a 00.
Step 2.4.1.1
Perform the row operation R2=R2-2R1R2=R2−2R1 to make the entry at 2,12,1 a 00.
[12-11002-2⋅11-2⋅21-2⋅-10-2⋅11-2⋅00-2⋅0121001]⎡⎢⎣12−11002−2⋅11−2⋅21−2⋅−10−2⋅11−2⋅00−2⋅0121001⎤⎥⎦
Step 2.4.1.2
Simplify R2R2.
[12-11000-33-210121001]⎡⎢⎣12−11000−33−210121001⎤⎥⎦
[12-11000-33-210121001]⎡⎢⎣12−11000−33−210121001⎤⎥⎦
Step 2.4.2
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
Step 2.4.2.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[12-11000-33-2101-12-21+10-10-01-0]⎡⎢⎣12−11000−33−2101−12−21+10−10−01−0⎤⎥⎦
Step 2.4.2.2
Simplify R3R3.
[12-11000-33-210002-101]⎡⎢⎣12−11000−33−210002−101⎤⎥⎦
[12-11000-33-210002-101]⎡⎢⎣12−11000−33−210002−101⎤⎥⎦
Step 2.4.3
Multiply each element of R2R2 by -13−13 to make the entry at 2,22,2 a 11.
Step 2.4.3.1
Multiply each element of R2R2 by -13−13 to make the entry at 2,22,2 a 11.
[12-1100-13⋅0-13⋅-3-13⋅3-13⋅-2-13⋅1-13⋅0002-101]⎡⎢
⎢⎣12−1100−13⋅0−13⋅−3−13⋅3−13⋅−2−13⋅1−13⋅0002−101⎤⎥
⎥⎦
Step 2.4.3.2
Simplify R2R2.
[12-110001-123-130002-101]⎡⎢
⎢⎣12−110001−123−130002−101⎤⎥
⎥⎦
[12-110001-123-130002-101]⎡⎢
⎢⎣12−110001−123−130002−101⎤⎥
⎥⎦
Step 2.4.4
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
Step 2.4.4.1
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
[12-110001-123-130020222-120212]⎡⎢
⎢⎣12−110001−123−130020222−120212⎤⎥
⎥⎦
Step 2.4.4.2
Simplify R3R3.
[12-110001-123-130001-12012]⎡⎢
⎢⎣12−110001−123−130001−12012⎤⎥
⎥⎦
[12-110001-123-130001-12012]⎡⎢
⎢⎣12−110001−123−130001−12012⎤⎥
⎥⎦
Step 2.4.5
Perform the row operation R2=R2+R3R2=R2+R3 to make the entry at 2,32,3 a 00.
Step 2.4.5.1
Perform the row operation R2=R2+R3R2=R2+R3 to make the entry at 2,32,3 a 00.
[12-11000+01+0-1+1⋅123-12-13+00+12001-12012]⎡⎢
⎢⎣12−11000+01+0−1+1⋅123−12−13+00+12001−12012⎤⎥
⎥⎦
Step 2.4.5.2
Simplify R2R2.
[12-110001016-1312001-12012]⎡⎢
⎢⎣12−110001016−1312001−12012⎤⎥
⎥⎦
[12-110001016-1312001-12012]⎡⎢
⎢⎣12−110001016−1312001−12012⎤⎥
⎥⎦
Step 2.4.6
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
Step 2.4.6.1
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
[1+02+0-1+1⋅11-120+00+1201016-1312001-12012]⎡⎢
⎢
⎢⎣1+02+0−1+1⋅11−120+00+1201016−1312001−12012⎤⎥
⎥
⎥⎦
Step 2.4.6.2
Simplify R1R1.
[1201201201016-1312001-12012]⎡⎢
⎢
⎢⎣1201201201016−1312001−12012⎤⎥
⎥
⎥⎦
[1201201201016-1312001-12012]⎡⎢
⎢
⎢⎣1201201201016−1312001−12012⎤⎥
⎥
⎥⎦
Step 2.4.7
Perform the row operation R1=R1-2R2R1=R1−2R2 to make the entry at 1,21,2 a 00.
Step 2.4.7.1
Perform the row operation R1=R1-2R2R1=R1−2R2 to make the entry at 1,21,2 a 00.
[1-2⋅02-2⋅10-2⋅012-2(16)0-2(-13)12-2(12)01016-1312001-12012]⎡⎢
⎢
⎢
⎢⎣1−2⋅02−2⋅10−2⋅012−2(16)0−2(−13)12−2(12)01016−1312001−12012⎤⎥
⎥
⎥
⎥⎦
Step 2.4.7.2
Simplify R1.
[1001623-1201016-1312001-12012]
[1001623-1201016-1312001-12012]
[1001623-1201016-1312001-12012]
Step 2.5
The right half of the reduced row echelon form is the inverse.
[1623-1216-1312-12012]
[1623-1216-1312-12012]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([1623-1216-1312-12012]⋅[12-1211121])⋅[xyz]=[1623-1216-1312-12012]⋅[4-22]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. A⋅A-1=1.
[xyz]=[1623-1216-1312-12012]⋅[4-22]
Step 5
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[16⋅4+23⋅-2-12⋅216⋅4-13⋅-2+12⋅2-12⋅4+0⋅-2+12⋅2]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[-5373-1]
[-5373-1]
Step 6
Simplify the left and right side.
[xyz]=[-5373-1]
Step 7
Find the solution.
x=-53
y=73
z=-1