Linear Algebra Examples

Solve Using an Inverse Matrix x+2y-z=4 , 2x+y+z=-2 , x+2y+z=2
x+2y-z=4x+2yz=4 , 2x+y+z=-22x+y+z=2 , x+2y+z=2x+2y+z=2
Step 1
Find the AX=BAX=B from the system of equations.
[12-1211121][xyz]=[4-22]121211121xyz=422
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
Find the determinant.
Tap for more steps...
Step 2.1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Tap for more steps...
Step 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 2.1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|1121|1121
Step 2.1.1.4
Multiply element a11a11 by its cofactor.
1|1121|11121
Step 2.1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2111|2111
Step 2.1.1.6
Multiply element a12a12 by its cofactor.
-2|2111|22111
Step 2.1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|2112|2112
Step 2.1.1.8
Multiply element a13a13 by its cofactor.
-1|2112|12112
Step 2.1.1.9
Add the terms together.
1|1121|-2|2111|-1|2112|111212211112112
1|1121|-2|2111|-1|2112|111212211112112
Step 2.1.2
Evaluate |1121|1121.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
1(11-21)-2|2111|-1|2112|1(1121)2211112112
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply 11 by 11.
1(1-21)-2|2111|-1|2112|1(121)2211112112
Step 2.1.2.2.1.2
Multiply -22 by 11.
1(1-2)-2|2111|-1|2112|1(12)2211112112
1(1-2)-2|2111|-1|2112|1(12)2211112112
Step 2.1.2.2.2
Subtract 22 from 11.
1-1-2|2111|-1|2112|112211112112
1-1-2|2111|-1|2112|112211112112
1-1-2|2111|-1|2112|112211112112
Step 2.1.3
Evaluate |2111|2111.
Tap for more steps...
Step 2.1.3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
1-1-2(21-11)-1|2112|112(2111)12112
Step 2.1.3.2
Simplify the determinant.
Tap for more steps...
Step 2.1.3.2.1
Simplify each term.
Tap for more steps...
Step 2.1.3.2.1.1
Multiply 22 by 11.
1-1-2(2-11)-1|2112|112(211)12112
Step 2.1.3.2.1.2
Multiply -11 by 11.
1-1-2(2-1)-1|2112|112(21)12112
1-1-2(2-1)-1|2112|112(21)12112
Step 2.1.3.2.2
Subtract 11 from 22.
1-1-21-1|2112|112112112
1-1-21-1|2112|112112112
1-1-21-1|2112|112112112
Step 2.1.4
Evaluate |2112|2112.
Tap for more steps...
Step 2.1.4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
1-1-21-1(22-11)11211(2211)
Step 2.1.4.2
Simplify the determinant.
Tap for more steps...
Step 2.1.4.2.1
Simplify each term.
Tap for more steps...
Step 2.1.4.2.1.1
Multiply 22 by 22.
1-1-21-1(4-11)11211(411)
Step 2.1.4.2.1.2
Multiply -11 by 11.
1-1-21-1(4-1)11211(41)
1-1-21-1(4-1)11211(41)
Step 2.1.4.2.2
Subtract 11 from 44.
1-1-21-13112113
1-1-21-13112113
1-1-21-13112113
Step 2.1.5
Simplify the determinant.
Tap for more steps...
Step 2.1.5.1
Simplify each term.
Tap for more steps...
Step 2.1.5.1.1
Multiply -11 by 11.
-1-21-1312113
Step 2.1.5.1.2
Multiply -22 by 11.
-1-2-131213
Step 2.1.5.1.3
Multiply -11 by 33.
-1-2-3123
-1-2-3123
Step 2.1.5.2
Subtract 22 from -11.
-3-333
Step 2.1.5.3
Subtract 33 from -33.
-66
-66
-66
Step 2.2
Since the determinant is non-zero, the inverse exists.
Step 2.3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[12-1100211010121001]121100211010121001
Step 2.4
Find the reduced row echelon form.
Tap for more steps...
Step 2.4.1
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
Tap for more steps...
Step 2.4.1.1
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
[12-11002-211-221-2-10-211-200-20121001]121100221122121021120020121001
Step 2.4.1.2
Simplify R2R2.
[12-11000-33-210121001]121100033210121001
[12-11000-33-210121001]121100033210121001
Step 2.4.2
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
Tap for more steps...
Step 2.4.2.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[12-11000-33-2101-12-21+10-10-01-0]12110003321011221+1010010
Step 2.4.2.2
Simplify R3R3.
[12-11000-33-210002-101]121100033210002101
[12-11000-33-210002-101]121100033210002101
Step 2.4.3
Multiply each element of R2R2 by -1313 to make the entry at 2,22,2 a 11.
Tap for more steps...
Step 2.4.3.1
Multiply each element of R2R2 by -1313 to make the entry at 2,22,2 a 11.
[12-1100-130-13-3-133-13-2-131-130002-101]⎢ ⎢121100130133133132131130002101⎥ ⎥
Step 2.4.3.2
Simplify R2R2.
[12-110001-123-130002-101]⎢ ⎢12110001123130002101⎥ ⎥
[12-110001-123-130002-101]⎢ ⎢12110001123130002101⎥ ⎥
Step 2.4.4
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
Tap for more steps...
Step 2.4.4.1
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
[12-110001-123-130020222-120212]⎢ ⎢12110001123130020222120212⎥ ⎥
Step 2.4.4.2
Simplify R3R3.
[12-110001-123-130001-12012]⎢ ⎢1211000112313000112012⎥ ⎥
[12-110001-123-130001-12012]⎢ ⎢1211000112313000112012⎥ ⎥
Step 2.4.5
Perform the row operation R2=R2+R3R2=R2+R3 to make the entry at 2,32,3 a 00.
Tap for more steps...
Step 2.4.5.1
Perform the row operation R2=R2+R3R2=R2+R3 to make the entry at 2,32,3 a 00.
[12-11000+01+0-1+1123-12-13+00+12001-12012]⎢ ⎢1211000+01+01+11231213+00+1200112012⎥ ⎥
Step 2.4.5.2
Simplify R2R2.
[12-110001016-1312001-12012]⎢ ⎢12110001016131200112012⎥ ⎥
[12-110001016-1312001-12012]⎢ ⎢12110001016131200112012⎥ ⎥
Step 2.4.6
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
Tap for more steps...
Step 2.4.6.1
Perform the row operation R1=R1+R3R1=R1+R3 to make the entry at 1,31,3 a 00.
[1+02+0-1+111-120+00+1201016-1312001-12012]⎢ ⎢ ⎢1+02+01+111120+00+1201016131200112012⎥ ⎥ ⎥
Step 2.4.6.2
Simplify R1R1.
[1201201201016-1312001-12012]⎢ ⎢ ⎢1201201201016131200112012⎥ ⎥ ⎥
[1201201201016-1312001-12012]⎢ ⎢ ⎢1201201201016131200112012⎥ ⎥ ⎥
Step 2.4.7
Perform the row operation R1=R1-2R2R1=R12R2 to make the entry at 1,21,2 a 00.
Tap for more steps...
Step 2.4.7.1
Perform the row operation R1=R1-2R2R1=R12R2 to make the entry at 1,21,2 a 00.
[1-202-210-2012-2(16)0-2(-13)12-2(12)01016-1312001-12012]⎢ ⎢ ⎢ ⎢120221020122(16)02(13)122(12)01016131200112012⎥ ⎥ ⎥ ⎥
Step 2.4.7.2
Simplify R1.
[1001623-1201016-1312001-12012]
[1001623-1201016-1312001-12012]
[1001623-1201016-1312001-12012]
Step 2.5
The right half of the reduced row echelon form is the inverse.
[1623-1216-1312-12012]
[1623-1216-1312-12012]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([1623-1216-1312-12012][12-1211121])[xyz]=[1623-1216-1312-12012][4-22]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. AA-1=1.
[xyz]=[1623-1216-1312-12012][4-22]
Step 5
Multiply [1623-1216-1312-12012][4-22].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[164+23-2-122164-13-2+122-124+0-2+122]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[-5373-1]
[-5373-1]
Step 6
Simplify the left and right side.
[xyz]=[-5373-1]
Step 7
Find the solution.
x=-53
y=73
z=-1
 [x2  12  π  xdx ]