Linear Algebra Examples

Find the Inverse [[4,-10,29],[1,-2,5],[-3,7,-19]]
[4-10291-25-37-19]
Step 1
Find the determinant.
Tap for more steps...
Step 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Tap for more steps...
Step 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-257-19|
Step 1.1.4
Multiply element a11 by its cofactor.
4|-257-19|
Step 1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|15-3-19|
Step 1.1.6
Multiply element a12 by its cofactor.
10|15-3-19|
Step 1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1-2-37|
Step 1.1.8
Multiply element a13 by its cofactor.
29|1-2-37|
Step 1.1.9
Add the terms together.
4|-257-19|+10|15-3-19|+29|1-2-37|
4|-257-19|+10|15-3-19|+29|1-2-37|
Step 1.2
Evaluate |-257-19|.
Tap for more steps...
Step 1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
4(-2-19-75)+10|15-3-19|+29|1-2-37|
Step 1.2.2
Simplify the determinant.
Tap for more steps...
Step 1.2.2.1
Simplify each term.
Tap for more steps...
Step 1.2.2.1.1
Multiply -2 by -19.
4(38-75)+10|15-3-19|+29|1-2-37|
Step 1.2.2.1.2
Multiply -7 by 5.
4(38-35)+10|15-3-19|+29|1-2-37|
4(38-35)+10|15-3-19|+29|1-2-37|
Step 1.2.2.2
Subtract 35 from 38.
43+10|15-3-19|+29|1-2-37|
43+10|15-3-19|+29|1-2-37|
43+10|15-3-19|+29|1-2-37|
Step 1.3
Evaluate |15-3-19|.
Tap for more steps...
Step 1.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
43+10(1-19-(-35))+29|1-2-37|
Step 1.3.2
Simplify the determinant.
Tap for more steps...
Step 1.3.2.1
Simplify each term.
Tap for more steps...
Step 1.3.2.1.1
Multiply -19 by 1.
43+10(-19-(-35))+29|1-2-37|
Step 1.3.2.1.2
Multiply -(-35).
Tap for more steps...
Step 1.3.2.1.2.1
Multiply -3 by 5.
43+10(-19--15)+29|1-2-37|
Step 1.3.2.1.2.2
Multiply -1 by -15.
43+10(-19+15)+29|1-2-37|
43+10(-19+15)+29|1-2-37|
43+10(-19+15)+29|1-2-37|
Step 1.3.2.2
Add -19 and 15.
43+10-4+29|1-2-37|
43+10-4+29|1-2-37|
43+10-4+29|1-2-37|
Step 1.4
Evaluate |1-2-37|.
Tap for more steps...
Step 1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
43+10-4+29(17-(-3-2))
Step 1.4.2
Simplify the determinant.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Multiply 7 by 1.
43+10-4+29(7-(-3-2))
Step 1.4.2.1.2
Multiply -(-3-2).
Tap for more steps...
Step 1.4.2.1.2.1
Multiply -3 by -2.
43+10-4+29(7-16)
Step 1.4.2.1.2.2
Multiply -1 by 6.
43+10-4+29(7-6)
43+10-4+29(7-6)
43+10-4+29(7-6)
Step 1.4.2.2
Subtract 6 from 7.
43+10-4+291
43+10-4+291
43+10-4+291
Step 1.5
Simplify the determinant.
Tap for more steps...
Step 1.5.1
Simplify each term.
Tap for more steps...
Step 1.5.1.1
Multiply 4 by 3.
12+10-4+291
Step 1.5.1.2
Multiply 10 by -4.
12-40+291
Step 1.5.1.3
Multiply 29 by 1.
12-40+29
12-40+29
Step 1.5.2
Subtract 40 from 12.
-28+29
Step 1.5.3
Add -28 and 29.
1
1
1
Step 2
Since the determinant is non-zero, the inverse exists.
Step 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[4-10291001-25010-37-19001]
Step 4
Find the reduced row echelon form.
Tap for more steps...
Step 4.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
Tap for more steps...
Step 4.1.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
[44-1042941404041-25010-37-19001]
Step 4.1.2
Simplify R1.
[1-5229414001-25010-37-19001]
[1-5229414001-25010-37-19001]
Step 4.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 4.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1-5229414001-1-2+525-2940-141-00-0-37-19001]
Step 4.2.2
Simplify R2.
[1-522941400012-94-1410-37-19001]
[1-522941400012-94-1410-37-19001]
Step 4.3
Perform the row operation R3=R3+3R1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 4.3.1
Perform the row operation R3=R3+3R1 to make the entry at 3,1 a 0.
[1-522941400012-94-1410-3+317+3(-52)-19+3(294)0+3(14)0+301+30]
Step 4.3.2
Simplify R3.
[1-522941400012-94-14100-121143401]
[1-522941400012-94-14100-121143401]
Step 4.4
Multiply each element of R2 by 2 to make the entry at 2,2 a 1.
Tap for more steps...
Step 4.4.1
Multiply each element of R2 by 2 to make the entry at 2,2 a 1.
[1-522941400202(12)2(-94)2(-14)21200-121143401]
Step 4.4.2
Simplify R2.
[1-52294140001-92-12200-121143401]
[1-52294140001-92-12200-121143401]
Step 4.5
Perform the row operation R3=R3+12R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 4.5.1
Perform the row operation R3=R3+12R2 to make the entry at 3,2 a 0.
[1-52294140001-92-12200+120-12+121114+12(-92)34+12(-12)0+1221+120]
Step 4.5.2
Simplify R3.
[1-52294140001-92-122000121211]
[1-52294140001-92-122000121211]
Step 4.6
Multiply each element of R3 by 2 to make the entry at 3,3 a 1.
Tap for more steps...
Step 4.6.1
Multiply each element of R3 by 2 to make the entry at 3,3 a 1.
[1-52294140001-92-122020202(12)2(12)2121]
Step 4.6.2
Simplify R3.
[1-52294140001-92-1220001122]
[1-52294140001-92-1220001122]
Step 4.7
Perform the row operation R2=R2+92R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 4.7.1
Perform the row operation R2=R2+92R3 to make the entry at 2,3 a 0.
[1-5229414000+9201+920-92+921-12+9212+9220+922001122]
Step 4.7.2
Simplify R2.
[1-5229414000104119001122]
[1-5229414000104119001122]
Step 4.8
Perform the row operation R1=R1-294R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 4.8.1
Perform the row operation R1=R1-294R3 to make the entry at 1,3 a 0.
[1-2940-52-2940294-294114-29410-29420-29420104119001122]
Step 4.8.2
Simplify R1.
[1-520-7-292-2920104119001122]
[1-520-7-292-2920104119001122]
Step 4.9
Perform the row operation R1=R1+52R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 4.9.1
Perform the row operation R1=R1+52R2 to make the entry at 1,2 a 0.
[1+520-52+5210+520-7+524-292+5211-292+5290104119001122]
Step 4.9.2
Simplify R1.
[10031380104119001122]
[10031380104119001122]
[10031380104119001122]
Step 5
The right half of the reduced row echelon form is the inverse.
[31384119122]
 [x2  12  π  xdx ]