Enter a problem...
Linear Algebra Examples
[110101101210210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣110101101210210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 1
Step 1.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1101-10-11-0101210210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1101−10−11−0101210210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 1.2
Simplify R2R2.
[1100-11101210210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−11101210210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[1100-11101210210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−11101210210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2
Step 2.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[1100-111-10-11-0210210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−111−10−11−0210210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 2.2
Simplify R3R3.
[1100-110-11210210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−110−11210210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[1100-110-11210210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−110−11210210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3
Step 3.1
Perform the row operation R4=R4-2R1R4=R4−2R1 to make the entry at 4,14,1 a 00.
[1100-110-112-2⋅11-2⋅10-2⋅0210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−110−112−2⋅11−2⋅10−2⋅0210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.2
Simplify R4R4.
[1100-110-110-10210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−110−110−10210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[1100-110-110-10210]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−110−110−10210⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 4
Step 4.1
Perform the row operation R5=R5-2R1R5=R5−2R1 to make the entry at 5,15,1 a 00.
[1100-110-110-102-2⋅11-2⋅10-2⋅0]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−110−110−102−2⋅11−2⋅10−2⋅0⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 4.2
Simplify R5R5.
[1100-110-110-100-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−110−110−100−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[1100-110-110-100-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100−110−110−100−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 5
Step 5.1
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
[110-0--1-1⋅10-110-100-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣110−0−−1−1⋅10−110−100−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 5.2
Simplify R2R2.
[11001-10-110-100-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−10−110−100−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[11001-10-110-100-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−10−110−100−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 6
Step 6.1
Perform the row operation R3=R3+R2R3=R3+R2 to make the entry at 3,23,2 a 00.
[11001-10+0-1+1⋅11-10-100-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−10+0−1+1⋅11−10−100−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 6.2
Simplify R3R3.
[11001-10000-100-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−10000−100−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[11001-10000-100-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−10000−100−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 7
Step 7.1
Perform the row operation R4=R4+R2R4=R4+R2 to make the entry at 4,24,2 a 00.
[11001-10000+0-1+1⋅10-10-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−10000+0−1+1⋅10−10−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 7.2
Simplify R4R4.
[11001-100000-10-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−100000−10−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[11001-100000-10-10]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−100000−10−10⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 8
Step 8.1
Perform the row operation R5=R5+R2R5=R5+R2 to make the entry at 5,25,2 a 00.
[11001-100000-10+0-1+1⋅10-1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−100000−10+0−1+1⋅10−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 8.2
Simplify R5R5.
[11001-100000-100-1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−100000−100−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[11001-100000-100-1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−100000−100−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 9
Swap R4R4 with R3R3 to put a nonzero entry at 3,33,3.
[11001-100-100000-1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−100−100000−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 10
Step 10.1
Multiply each element of R3R3 by -1−1 to make the entry at 3,33,3 a 11.
[11001-1-0-0--100000-1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−1−0−0−−100000−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 10.2
Simplify R3R3.
[11001-100100000-1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−100100000−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[11001-100100000-1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−100100000−1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 11
Step 11.1
Perform the row operation R5=R5+R3R5=R5+R3 to make the entry at 5,35,3 a 00.
[11001-10010000+00+0-1+1⋅1]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−10010000+00+0−1+1⋅1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 11.2
Simplify R5R5.
[11001-1001000000]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−1001000000⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[11001-1001000000]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣11001−1001000000⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 12
Step 12.1
Perform the row operation R2=R2+R3R2=R2+R3 to make the entry at 2,32,3 a 00.
[1100+01+0-1+1⋅1001000000]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1100+01+0−1+1⋅1001000000⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 12.2
Simplify R2R2.
[110010001000000]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣110010001000000⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[110010001000000]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣110010001000000⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 13
Step 13.1
Perform the row operation R1=R1-R2R1=R1−R2 to make the entry at 1,21,2 a 00.
[1-01-10-0010001000000]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1−01−10−0010001000000⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 13.2
Simplify R1R1.
[100010001000000]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣100010001000000⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
[100010001000000]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣100010001000000⎤⎥
⎥
⎥
⎥
⎥
⎥⎦