Enter a problem...
Linear Algebra Examples
[25010-32-12]⎡⎢⎣25010−32−12⎤⎥⎦
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|0-3-12|∣∣∣0−3−12∣∣∣
Step 1.4
Multiply element a11a11 by its cofactor.
2|0-3-12|2∣∣∣0−3−12∣∣∣
Step 1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1-322|∣∣∣1−322∣∣∣
Step 1.6
Multiply element a12a12 by its cofactor.
-5|1-322|−5∣∣∣1−322∣∣∣
Step 1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|102-1|∣∣∣102−1∣∣∣
Step 1.8
Multiply element a13a13 by its cofactor.
0|102-1|0∣∣∣102−1∣∣∣
Step 1.9
Add the terms together.
2|0-3-12|-5|1-322|+0|102-1|2∣∣∣0−3−12∣∣∣−5∣∣∣1−322∣∣∣+0∣∣∣102−1∣∣∣
2|0-3-12|-5|1-322|+0|102-1|2∣∣∣0−3−12∣∣∣−5∣∣∣1−322∣∣∣+0∣∣∣102−1∣∣∣
Step 2
Multiply 00 by |102-1|∣∣∣102−1∣∣∣.
2|0-3-12|-5|1-322|+02∣∣∣0−3−12∣∣∣−5∣∣∣1−322∣∣∣+0
Step 3
Step 3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
2(0⋅2---3)-5|1-322|+02(0⋅2−−−3)−5∣∣∣1−322∣∣∣+0
Step 3.2
Simplify the determinant.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 00 by 22.
2(0---3)-5|1-322|+02(0−−−3)−5∣∣∣1−322∣∣∣+0
Step 3.2.1.2
Multiply ---3−−−3.
Step 3.2.1.2.1
Multiply -1−1 by -3−3.
2(0-1⋅3)-5|1-322|+02(0−1⋅3)−5∣∣∣1−322∣∣∣+0
Step 3.2.1.2.2
Multiply -1−1 by 33.
2(0-3)-5|1-322|+02(0−3)−5∣∣∣1−322∣∣∣+0
2(0-3)-5|1-322|+02(0−3)−5∣∣∣1−322∣∣∣+0
2(0-3)-5|1-322|+02(0−3)−5∣∣∣1−322∣∣∣+0
Step 3.2.2
Subtract 33 from 00.
2⋅-3-5|1-322|+02⋅−3−5∣∣∣1−322∣∣∣+0
2⋅-3-5|1-322|+02⋅−3−5∣∣∣1−322∣∣∣+0
2⋅-3-5|1-322|+02⋅−3−5∣∣∣1−322∣∣∣+0
Step 4
Step 4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
2⋅-3-5(1⋅2-2⋅-3)+0
Step 4.2
Simplify the determinant.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Multiply 2 by 1.
2⋅-3-5(2-2⋅-3)+0
Step 4.2.1.2
Multiply -2 by -3.
2⋅-3-5(2+6)+0
2⋅-3-5(2+6)+0
Step 4.2.2
Add 2 and 6.
2⋅-3-5⋅8+0
2⋅-3-5⋅8+0
2⋅-3-5⋅8+0
Step 5
Step 5.1
Simplify each term.
Step 5.1.1
Multiply 2 by -3.
-6-5⋅8+0
Step 5.1.2
Multiply -5 by 8.
-6-40+0
-6-40+0
Step 5.2
Subtract 40 from -6.
-46+0
Step 5.3
Add -46 and 0.
-46
-46