Linear Algebra Examples

Multiply the Matrices [[1/( square root of 17),-4/( square root of 17)]][[1/( square root of 17)],[-4/( square root of 17)]]
[117-417][117-417][117417]117417
Step 1
Multiply 117117 by 17171717.
[1171717-417][117-417][1171717417]117417
Step 2
Combine and simplify the denominator.
Tap for more steps...
Step 2.1
Multiply 117117 by 17171717.
[171717-417][117-417][171717417]117417
Step 2.2
Raise 1717 to the power of 11.
[1717117-417][117-417][1717117417]117417
Step 2.3
Raise 1717 to the power of 11.
[17171171-417][117-417][17171171417]117417
Step 2.4
Use the power rule aman=am+naman=am+n to combine exponents.
[17171+1-417][117-417][17171+1417]117417
Step 2.5
Add 11 and 11.
[17172-417][117-417][17172417]117417
Step 2.6
Rewrite 172172 as 1717.
Tap for more steps...
Step 2.6.1
Use nax=axnnax=axn to rewrite 1717 as 17121712.
[17(1712)2-417][117-417][17(1712)2417]117417
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
[1717122-417][117-417][1717122417]117417
Step 2.6.3
Combine 1212 and 22.
[171722-417][117-417][171722417]117417
Step 2.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.6.4.1
Cancel the common factor.
[171722-417][117-417]
Step 2.6.4.2
Rewrite the expression.
[17171-417][117-417]
[17171-417][117-417]
Step 2.6.5
Evaluate the exponent.
[1717-417][117-417]
[1717-417][117-417]
[1717-417][117-417]
Step 3
Multiply 417 by 1717.
[1717-(4171717)][117-417]
Step 4
Combine and simplify the denominator.
Tap for more steps...
Step 4.1
Multiply 417 by 1717.
[1717-4171717][117-417]
Step 4.2
Raise 17 to the power of 1.
[1717-41717117][117-417]
Step 4.3
Raise 17 to the power of 1.
[1717-417171171][117-417]
Step 4.4
Use the power rule aman=am+n to combine exponents.
[1717-417171+1][117-417]
Step 4.5
Add 1 and 1.
[1717-417172][117-417]
Step 4.6
Rewrite 172 as 17.
Tap for more steps...
Step 4.6.1
Use nax=axn to rewrite 17 as 1712.
[1717-417(1712)2][117-417]
Step 4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[1717-41717122][117-417]
Step 4.6.3
Combine 12 and 2.
[1717-4171722][117-417]
Step 4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.6.4.1
Cancel the common factor.
[1717-4171722][117-417]
Step 4.6.4.2
Rewrite the expression.
[1717-417171][117-417]
[1717-417171][117-417]
Step 4.6.5
Evaluate the exponent.
[1717-41717][117-417]
[1717-41717][117-417]
[1717-41717][117-417]
Step 5
Multiply 117 by 1717.
[1717-41717][1171717-417]
Step 6
Combine and simplify the denominator.
Tap for more steps...
Step 6.1
Multiply 117 by 1717.
[1717-41717][171717-417]
Step 6.2
Raise 17 to the power of 1.
[1717-41717][1717117-417]
Step 6.3
Raise 17 to the power of 1.
[1717-41717][17171171-417]
Step 6.4
Use the power rule aman=am+n to combine exponents.
[1717-41717][17171+1-417]
Step 6.5
Add 1 and 1.
[1717-41717][17172-417]
Step 6.6
Rewrite 172 as 17.
Tap for more steps...
Step 6.6.1
Use nax=axn to rewrite 17 as 1712.
[1717-41717][17(1712)2-417]
Step 6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[1717-41717][1717122-417]
Step 6.6.3
Combine 12 and 2.
[1717-41717][171722-417]
Step 6.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.6.4.1
Cancel the common factor.
[1717-41717][171722-417]
Step 6.6.4.2
Rewrite the expression.
[1717-41717][17171-417]
[1717-41717][17171-417]
Step 6.6.5
Evaluate the exponent.
[1717-41717][1717-417]
[1717-41717][1717-417]
[1717-41717][1717-417]
Step 7
Multiply 417 by 1717.
[1717-41717][1717-(4171717)]
Step 8
Combine and simplify the denominator.
Tap for more steps...
Step 8.1
Multiply 417 by 1717.
[1717-41717][1717-4171717]
Step 8.2
Raise 17 to the power of 1.
[1717-41717][1717-41717117]
Step 8.3
Raise 17 to the power of 1.
[1717-41717][1717-417171171]
Step 8.4
Use the power rule aman=am+n to combine exponents.
[1717-41717][1717-417171+1]
Step 8.5
Add 1 and 1.
[1717-41717][1717-417172]
Step 8.6
Rewrite 172 as 17.
Tap for more steps...
Step 8.6.1
Use nax=axn to rewrite 17 as 1712.
[1717-41717][1717-417(1712)2]
Step 8.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[1717-41717][1717-41717122]
Step 8.6.3
Combine 12 and 2.
[1717-41717][1717-4171722]
Step 8.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.6.4.1
Cancel the common factor.
[1717-41717][1717-4171722]
Step 8.6.4.2
Rewrite the expression.
[1717-41717][1717-417171]
[1717-41717][1717-417171]
Step 8.6.5
Evaluate the exponent.
[1717-41717][1717-41717]
[1717-41717][1717-41717]
[1717-41717][1717-41717]
Step 9
Multiply [1717-41717][1717-41717].
Tap for more steps...
Step 9.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 1×2 and the second matrix is 2×1.
Step 9.2
Multiply each row in the first matrix by each column in the second matrix.
[17171717-41717(-41717)]
Step 9.3
Simplify each element of the matrix by multiplying out all the expressions.
[1]
[1]
(
(
)
)
|
|
[
[
]
]
{
{
}
}
A
A
7
7
8
8
9
9
B
B
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]