Enter a problem...
Linear Algebra Examples
[1√17-4√17][1√17-4√17][1√17−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 1
Multiply 1√171√17 by √17√17√17√17.
[1√17⋅√17√17-4√17][1√17-4√17][1√17⋅√17√17−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2
Step 2.1
Multiply 1√171√17 by √17√17√17√17.
[√17√17√17-4√17][1√17-4√17][√17√17√17−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2.2
Raise √17√17 to the power of 11.
[√17√171√17-4√17][1√17-4√17][√17√171√17−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2.3
Raise √17√17 to the power of 11.
[√17√171√171-4√17][1√17-4√17][√17√171√171−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2.4
Use the power rule aman=am+naman=am+n to combine exponents.
[√17√171+1-4√17][1√17-4√17][√17√171+1−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2.5
Add 11 and 11.
[√17√172-4√17][1√17-4√17][√17√172−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2.6
Rewrite √172√172 as 1717.
Step 2.6.1
Use n√ax=axnn√ax=axn to rewrite √17√17 as 17121712.
[√17(1712)2-4√17][1√17-4√17][√17(1712)2−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
[√171712⋅2-4√17][1√17-4√17][√171712⋅2−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2.6.3
Combine 1212 and 22.
[√171722-4√17][1√17-4√17][√171722−4√17]⎡⎢⎣1√17−4√17⎤⎥⎦
Step 2.6.4
Cancel the common factor of 22.
Step 2.6.4.1
Cancel the common factor.
[√171722-4√17][1√17-4√17]
Step 2.6.4.2
Rewrite the expression.
[√17171-4√17][1√17-4√17]
[√17171-4√17][1√17-4√17]
Step 2.6.5
Evaluate the exponent.
[√1717-4√17][1√17-4√17]
[√1717-4√17][1√17-4√17]
[√1717-4√17][1√17-4√17]
Step 3
Multiply 4√17 by √17√17.
[√1717-(4√17⋅√17√17)][1√17-4√17]
Step 4
Step 4.1
Multiply 4√17 by √17√17.
[√1717-4√17√17√17][1√17-4√17]
Step 4.2
Raise √17 to the power of 1.
[√1717-4√17√171√17][1√17-4√17]
Step 4.3
Raise √17 to the power of 1.
[√1717-4√17√171√171][1√17-4√17]
Step 4.4
Use the power rule aman=am+n to combine exponents.
[√1717-4√17√171+1][1√17-4√17]
Step 4.5
Add 1 and 1.
[√1717-4√17√172][1√17-4√17]
Step 4.6
Rewrite √172 as 17.
Step 4.6.1
Use n√ax=axn to rewrite √17 as 1712.
[√1717-4√17(1712)2][1√17-4√17]
Step 4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[√1717-4√171712⋅2][1√17-4√17]
Step 4.6.3
Combine 12 and 2.
[√1717-4√171722][1√17-4√17]
Step 4.6.4
Cancel the common factor of 2.
Step 4.6.4.1
Cancel the common factor.
[√1717-4√171722][1√17-4√17]
Step 4.6.4.2
Rewrite the expression.
[√1717-4√17171][1√17-4√17]
[√1717-4√17171][1√17-4√17]
Step 4.6.5
Evaluate the exponent.
[√1717-4√1717][1√17-4√17]
[√1717-4√1717][1√17-4√17]
[√1717-4√1717][1√17-4√17]
Step 5
Multiply 1√17 by √17√17.
[√1717-4√1717][1√17⋅√17√17-4√17]
Step 6
Step 6.1
Multiply 1√17 by √17√17.
[√1717-4√1717][√17√17√17-4√17]
Step 6.2
Raise √17 to the power of 1.
[√1717-4√1717][√17√171√17-4√17]
Step 6.3
Raise √17 to the power of 1.
[√1717-4√1717][√17√171√171-4√17]
Step 6.4
Use the power rule aman=am+n to combine exponents.
[√1717-4√1717][√17√171+1-4√17]
Step 6.5
Add 1 and 1.
[√1717-4√1717][√17√172-4√17]
Step 6.6
Rewrite √172 as 17.
Step 6.6.1
Use n√ax=axn to rewrite √17 as 1712.
[√1717-4√1717][√17(1712)2-4√17]
Step 6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[√1717-4√1717][√171712⋅2-4√17]
Step 6.6.3
Combine 12 and 2.
[√1717-4√1717][√171722-4√17]
Step 6.6.4
Cancel the common factor of 2.
Step 6.6.4.1
Cancel the common factor.
[√1717-4√1717][√171722-4√17]
Step 6.6.4.2
Rewrite the expression.
[√1717-4√1717][√17171-4√17]
[√1717-4√1717][√17171-4√17]
Step 6.6.5
Evaluate the exponent.
[√1717-4√1717][√1717-4√17]
[√1717-4√1717][√1717-4√17]
[√1717-4√1717][√1717-4√17]
Step 7
Multiply 4√17 by √17√17.
[√1717-4√1717][√1717-(4√17⋅√17√17)]
Step 8
Step 8.1
Multiply 4√17 by √17√17.
[√1717-4√1717][√1717-4√17√17√17]
Step 8.2
Raise √17 to the power of 1.
[√1717-4√1717][√1717-4√17√171√17]
Step 8.3
Raise √17 to the power of 1.
[√1717-4√1717][√1717-4√17√171√171]
Step 8.4
Use the power rule aman=am+n to combine exponents.
[√1717-4√1717][√1717-4√17√171+1]
Step 8.5
Add 1 and 1.
[√1717-4√1717][√1717-4√17√172]
Step 8.6
Rewrite √172 as 17.
Step 8.6.1
Use n√ax=axn to rewrite √17 as 1712.
[√1717-4√1717][√1717-4√17(1712)2]
Step 8.6.2
Apply the power rule and multiply exponents, (am)n=amn.
[√1717-4√1717][√1717-4√171712⋅2]
Step 8.6.3
Combine 12 and 2.
[√1717-4√1717][√1717-4√171722]
Step 8.6.4
Cancel the common factor of 2.
Step 8.6.4.1
Cancel the common factor.
[√1717-4√1717][√1717-4√171722]
Step 8.6.4.2
Rewrite the expression.
[√1717-4√1717][√1717-4√17171]
[√1717-4√1717][√1717-4√17171]
Step 8.6.5
Evaluate the exponent.
[√1717-4√1717][√1717-4√1717]
[√1717-4√1717][√1717-4√1717]
[√1717-4√1717][√1717-4√1717]
Step 9
Step 9.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 1×2 and the second matrix is 2×1.
Step 9.2
Multiply each row in the first matrix by each column in the second matrix.
[√1717⋅√1717-4√1717(-4√1717)]
Step 9.3
Simplify each element of the matrix by multiplying out all the expressions.
[1]
[1]