Linear Algebra Examples

Find the Cube Roots of a Complex Number -4-4i
-4-4i
Step 1
Calculate the distance from (a,b) to the origin using the formula r=a2+b2.
r=(-4)2+(-4)2
Step 2
Simplify (-4)2+(-4)2.
Tap for more steps...
Step 2.1
Raise -4 to the power of 2.
r=16+(-4)2
Step 2.2
Raise -4 to the power of 2.
r=16+16
Step 2.3
Add 16 and 16.
r=32
Step 2.4
Rewrite 32 as 422.
Tap for more steps...
Step 2.4.1
Factor 16 out of 32.
r=16(2)
Step 2.4.2
Rewrite 16 as 42.
r=422
r=422
Step 2.5
Pull terms out from under the radical.
r=42
r=42
Step 3
Calculate reference angle θ̂=arctan(|ba|).
θ̂=arctan(|-4-4|)
Step 4
Simplify arctan(|-4-4|).
Tap for more steps...
Step 4.1
Divide -4 by -4.
θ̂=arctan(|1|)
Step 4.2
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
θ̂=arctan(1)
Step 4.3
The exact value of arctan(1) is π4.
θ̂=π4
θ̂=π4
Step 5
The point is located in the third quadrant because x and y are both negative. The quadrants are labeled in counter-clockwise order, starting in the upper-right.
Quadrant 3
Step 6
(a,b) is in the third quadrant. θ=π+θ̂
θ=π+π4
Step 7
Simplify θ.
Tap for more steps...
Step 7.1
To write π as a fraction with a common denominator, multiply by 44.
π44+π4
Step 7.2
Combine fractions.
Tap for more steps...
Step 7.2.1
Combine π and 44.
π44+π4
Step 7.2.2
Combine the numerators over the common denominator.
π4+π4
π4+π4
Step 7.3
Simplify the numerator.
Tap for more steps...
Step 7.3.1
Move 4 to the left of π.
4π+π4
Step 7.3.2
Add 4π and π.
5π4
5π4
5π4
Step 8
Use the formula to find the roots of the complex number.
(a+bi)1n=r1ncis(θ+2πkn), k=0,1,,n-1
Step 9
Substitute r, n, and θ into the formula.
Tap for more steps...
Step 9.1
To write π as a fraction with a common denominator, multiply by 44.
(42)13cisπ44+π4+2πk3
Step 9.2
Combine π and 44.
(42)13cisπ44+π4+2πk3
Step 9.3
Combine the numerators over the common denominator.
(42)13cisπ4+π4+2πk3
Step 9.4
Add π4 and π.
Tap for more steps...
Step 9.4.1
Reorder π and 4.
(42)13cis4π+π4+2πk3
Step 9.4.2
Add 4π and π.
(42)13cis5π4+2πk3
(42)13cis5π4+2πk3
Step 9.5
Combine (42)13 and 5π4+2πk3.
cis(42)13(5π4+2πk)3
Step 9.6
Combine c and (42)13(5π4+2πk)3.
isc((42)13(5π4+2πk))3
Step 9.7
Combine i and c((42)13(5π4+2πk))3.
si(c((42)13(5π4+2πk)))3
Step 9.8
Combine s and i(c((42)13(5π4+2πk)))3.
s(i(c((42)13(5π4+2πk))))3
Step 9.9
Remove parentheses.
Tap for more steps...
Step 9.9.1
Remove parentheses.
s(i(c(42)13(5π4+2πk)))3
Step 9.9.2
Remove parentheses.
s(i(c(42)13)(5π4+2πk))3
Step 9.9.3
Remove parentheses.
s(ic(42)13(5π4+2πk))3
Step 9.9.4
Remove parentheses.
s(ic(42)13)(5π4+2πk)3
Step 9.9.5
Remove parentheses.
s(ic)(42)13(5π4+2πk)3
Step 9.9.6
Remove parentheses.
sic(42)13(5π4+2πk)3
sic(42)13(5π4+2πk)3
sic(42)13(5π4+2πk)3
Step 10
Substitute k=0 into the formula and simplify.
Tap for more steps...
Step 10.1
Apply the product rule to 42.
k=0:413213cis((π+π4)+2π(0)3)
Step 10.2
To write π as a fraction with a common denominator, multiply by 44.
k=0:413213cis(π44+π4+2π(0)3)
Step 10.3
Combine π and 44.
k=0:413213cis(π44+π4+2π(0)3)
Step 10.4
Combine the numerators over the common denominator.
k=0:413213cis(π4+π4+2π(0)3)
Step 10.5
Simplify the numerator.
Tap for more steps...
Step 10.5.1
Move 4 to the left of π.
k=0:413213cis(4π+π4+2π(0)3)
Step 10.5.2
Add 4π and π.
k=0:413213cis(5π4+2π(0)3)
k=0:413213cis(5π4+2π(0)3)
Step 10.6
Multiply 2π(0).
Tap for more steps...
Step 10.6.1
Multiply 0 by 2.
k=0:413213cis(5π4+0π3)
Step 10.6.2
Multiply 0 by π.
k=0:413213cis(5π4+03)
k=0:413213cis(5π4+03)
Step 10.7
Add 5π4 and 0.
k=0:413213cis(5π43)
Step 10.8
Multiply the numerator by the reciprocal of the denominator.
k=0:413213cis(5π413)
Step 10.9
Multiply 5π413.
Tap for more steps...
Step 10.9.1
Multiply 5π4 by 13.
k=0:413213cis(5π43)
Step 10.9.2
Multiply 4 by 3.
k=0:413213cis(5π12)
k=0:413213cis(5π12)
k=0:413213cis(5π12)
Step 11
Substitute k=1 into the formula and simplify.
Tap for more steps...
Step 11.1
Apply the product rule to 42.
k=1:413213cis((π+π4)+2π(1)3)
Step 11.2
To write π as a fraction with a common denominator, multiply by 44.
k=1:413213cis(π44+π4+2π(1)3)
Step 11.3
Combine π and 44.
k=1:413213cis(π44+π4+2π(1)3)
Step 11.4
Combine the numerators over the common denominator.
k=1:413213cis(π4+π4+2π(1)3)
Step 11.5
Simplify the numerator.
Tap for more steps...
Step 11.5.1
Move 4 to the left of π.
k=1:413213cis(4π+π4+2π(1)3)
Step 11.5.2
Add 4π and π.
k=1:413213cis(5π4+2π(1)3)
k=1:413213cis(5π4+2π(1)3)
Step 11.6
Multiply 2 by 1.
k=1:413213cis(5π4+2π3)
Step 11.7
To write 2π as a fraction with a common denominator, multiply by 44.
k=1:413213cis(5π4+2π443)
Step 11.8
Combine 2π and 44.
k=1:413213cis(5π4+2π443)
Step 11.9
Combine the numerators over the common denominator.
k=1:413213cis(5π+2π443)
Step 11.10
Simplify the numerator.
Tap for more steps...
Step 11.10.1
Multiply 4 by 2.
k=1:413213cis(5π+8π43)
Step 11.10.2
Add 5π and 8π.
k=1:413213cis(13π43)
k=1:413213cis(13π43)
Step 11.11
Multiply the numerator by the reciprocal of the denominator.
k=1:413213cis(13π413)
Step 11.12
Multiply 13π413.
Tap for more steps...
Step 11.12.1
Multiply 13π4 by 13.
k=1:413213cis(13π43)
Step 11.12.2
Multiply 4 by 3.
k=1:413213cis(13π12)
k=1:413213cis(13π12)
k=1:413213cis(13π12)
Step 12
Substitute k=2 into the formula and simplify.
Tap for more steps...
Step 12.1
Apply the product rule to 42.
k=2:413213cis((π+π4)+2π(2)3)
Step 12.2
To write π as a fraction with a common denominator, multiply by 44.
k=2:413213cis(π44+π4+2π(2)3)
Step 12.3
Combine π and 44.
k=2:413213cis(π44+π4+2π(2)3)
Step 12.4
Combine the numerators over the common denominator.
k=2:413213cis(π4+π4+2π(2)3)
Step 12.5
Simplify the numerator.
Tap for more steps...
Step 12.5.1
Move 4 to the left of π.
k=2:413213cis(4π+π4+2π(2)3)
Step 12.5.2
Add 4π and π.
k=2:413213cis(5π4+2π(2)3)
k=2:413213cis(5π4+2π(2)3)
Step 12.6
Multiply 2 by 2.
k=2:413213cis(5π4+4π3)
Step 12.7
To write 4π as a fraction with a common denominator, multiply by 44.
k=2:413213cis(5π4+4π443)
Step 12.8
Combine 4π and 44.
k=2:413213cis(5π4+4π443)
Step 12.9
Combine the numerators over the common denominator.
k=2:413213cis(5π+4π443)
Step 12.10
Simplify the numerator.
Tap for more steps...
Step 12.10.1
Multiply 4 by 4.
k=2:413213cis(5π+16π43)
Step 12.10.2
Add 5π and 16π.
k=2:413213cis(21π43)
k=2:413213cis(21π43)
Step 12.11
Multiply the numerator by the reciprocal of the denominator.
k=2:413213cis(21π413)
Step 12.12
Cancel the common factor of 3.
Tap for more steps...
Step 12.12.1
Factor 3 out of 21π.
k=2:413213cis(3(7π)413)
Step 12.12.2
Cancel the common factor.
k=2:413213cis(3(7π)413)
Step 12.12.3
Rewrite the expression.
k=2:413213cis(7π4)
k=2:413213cis(7π4)
k=2:413213cis(7π4)
Step 13
List the solutions.
k=0:413213cis(5π12)
k=1:413213cis(13π12)
k=2:413213cis(7π4)
 [x2  12  π  xdx ]