Linear Algebra Examples

Solve using Gaussian Elimination 2x-3y+z=4 y-2z+x-5=0 3-2x=4y-z
2x-3y+z=4 y-2z+x-5=0 3-2x=4y-z
Step 1
Move variables to the left and constant terms to the right.
Tap for more steps...
Step 1.1
Add 5 to both sides of the equation.
2x-3y+z=4
y-2z+x=5
3-2x=4y-z
Step 1.2
Move -2z.
2x-3y+z=4
y+x-2z=5
3-2x=4y-z
Step 1.3
Reorder y and x.
2x-3y+z=4
x+y-2z=5
3-2x=4y-z
Step 1.4
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 1.4.1
Subtract 4y from both sides of the equation.
2x-3y+z=4
x+y-2z=5
3-2x-4y=-z
Step 1.4.2
Add z to both sides of the equation.
2x-3y+z=4
x+y-2z=5
3-2x-4y+z=0
2x-3y+z=4
x+y-2z=5
3-2x-4y+z=0
Step 1.5
Subtract 3 from both sides of the equation.
2x-3y+z=4
x+y-2z=5
-2x-4y+z=-3
2x-3y+z=4
x+y-2z=5
-2x-4y+z=-3
Step 2
Write the system as a matrix.
[2-31411-25-2-41-3]
Step 3
Find the reduced row echelon form.
Tap for more steps...
Step 3.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
Tap for more steps...
Step 3.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[22-32124211-25-2-41-3]
Step 3.1.2
Simplify R1.
[1-3212211-25-2-41-3]
[1-3212211-25-2-41-3]
Step 3.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Tap for more steps...
Step 3.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1-321221-11+32-2-125-2-2-41-3]
Step 3.2.2
Simplify R2.
[1-32122052-523-2-41-3]
[1-32122052-523-2-41-3]
Step 3.3
Perform the row operation R3=R3+2R1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 3.3.1
Perform the row operation R3=R3+2R1 to make the entry at 3,1 a 0.
[1-32122052-523-2+21-4+2(-32)1+2(12)-3+22]
Step 3.3.2
Simplify R3.
[1-32122052-5230-721]
[1-32122052-5230-721]
Step 3.4
Multiply each element of R2 by 25 to make the entry at 2,2 a 1.
Tap for more steps...
Step 3.4.1
Multiply each element of R2 by 25 to make the entry at 2,2 a 1.
[1-32122250255225(-52)2530-721]
Step 3.4.2
Simplify R2.
[1-3212201-1650-721]
[1-3212201-1650-721]
Step 3.5
Perform the row operation R3=R3+7R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 3.5.1
Perform the row operation R3=R3+7R2 to make the entry at 3,2 a 0.
[1-3212201-1650+70-7+712+7-11+7(65)]
Step 3.5.2
Simplify R3.
[1-3212201-16500-5475]
[1-3212201-16500-5475]
Step 3.6
Multiply each element of R3 by -15 to make the entry at 3,3 a 1.
Tap for more steps...
Step 3.6.1
Multiply each element of R3 by -15 to make the entry at 3,3 a 1.
[1-3212201-165-150-150-15-5-15475]
Step 3.6.2
Simplify R3.
[1-3212201-165001-4725]
[1-3212201-165001-4725]
Step 3.7
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 3.7.1
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
[1-321220+01+0-1+1165-4725001-4725]
Step 3.7.2
Simplify R2.
[1-32122010-1725001-4725]
[1-32122010-1725001-4725]
Step 3.8
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 3.8.1
Perform the row operation R1=R1-12R3 to make the entry at 1,3 a 0.
[1-120-32-12012-1212-12(-4725)010-1725001-4725]
Step 3.8.2
Simplify R1.
[1-32014750010-1725001-4725]
[1-32014750010-1725001-4725]
Step 3.9
Perform the row operation R1=R1+32R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 3.9.1
Perform the row operation R1=R1+32R2 to make the entry at 1,2 a 0.
[1+320-32+3210+32014750+32(-1725)010-1725001-4725]
Step 3.9.2
Simplify R1.
[1004825010-1725001-4725]
[1004825010-1725001-4725]
[1004825010-1725001-4725]
Step 4
Use the result matrix to declare the final solution to the system of equations.
x=4825
y=-1725
z=-4725
Step 5
The solution is the set of ordered pairs that make the system true.
(4825,-1725,-4725)
 [x2  12  π  xdx ]