Linear Algebra Examples

Determine if Linearly Dependent [[1,2,1],[3,-1,0],[6,-2,0]]
[1213-106-20]121310620
Step 1
To determine if the columns in the matrix are linearly dependent, determine if the equation Ax=0Ax=0 has any non-trivial solutions.
Step 2
Write as an augmented matrix for Ax=0Ax=0.
[12103-1006-200]⎢ ⎢121031006200⎥ ⎥
Step 3
Find the reduced row echelon form.
Tap for more steps...
Step 3.1
Perform the row operation R2=R2-3R1R2=R23R1 to make the entry at 2,12,1 a 00.
Tap for more steps...
Step 3.1.1
Perform the row operation R2=R2-3R1R2=R23R1 to make the entry at 2,12,1 a 00.
[12103-31-1-320-310-306-200]⎢ ⎢12103311320310306200⎥ ⎥
Step 3.1.2
Simplify R2R2.
[12100-7-306-200]⎢ ⎢121007306200⎥ ⎥
[12100-7-306-200]⎢ ⎢121007306200⎥ ⎥
Step 3.2
Perform the row operation R3=R3-6R1R3=R36R1 to make the entry at 3,13,1 a 00.
Tap for more steps...
Step 3.2.1
Perform the row operation R3=R3-6R1R3=R36R1 to make the entry at 3,13,1 a 00.
[12100-7-306-61-2-620-610-60]⎢ ⎢12100730661262061060⎥ ⎥
Step 3.2.2
Simplify R3R3.
[12100-7-300-14-60]⎢ ⎢1210073001460⎥ ⎥
[12100-7-300-14-60]⎢ ⎢1210073001460⎥ ⎥
Step 3.3
Multiply each element of R2R2 by -1717 to make the entry at 2,22,2 a 11.
Tap for more steps...
Step 3.3.1
Multiply each element of R2R2 by -17 to make the entry at 2,2 a 1.
[1210-170-17-7-17-3-1700-14-60]
Step 3.3.2
Simplify R2.
[1210013700-14-60]
[1210013700-14-60]
Step 3.4
Perform the row operation R3=R3+14R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 3.4.1
Perform the row operation R3=R3+14R2 to make the entry at 3,2 a 0.
[1210013700+140-14+141-6+14(37)0+140]
Step 3.4.2
Simplify R3.
[1210013700000]
[1210013700000]
Step 3.5
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 3.5.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-202-211-2(37)0-20013700000]
Step 3.5.2
Simplify R1.
[10170013700000]
[10170013700000]
[10170013700000]
Step 4
Remove rows that are all zeros.
[1017001370]
Step 5
Write the matrix as a system of linear equations.
x+17z=0
y+37z=0
Step 6
Since there are non-trivial solutions to Ax=0, the vectors are linearly dependent.
Linearly Dependent
 [x2  12  π  xdx ]