Enter a problem...
Linear Algebra Examples
Step 1
To determine if the columns in the matrix are linearly dependent, determine if the equation has any non-trivial solutions.
Step 2
Write as an augmented matrix for .
Step 3
Step 3.1
Perform the row operation to make the entry at a .
Step 3.1.1
Perform the row operation to make the entry at a .
Step 3.1.2
Simplify .
Step 3.2
Perform the row operation to make the entry at a .
Step 3.2.1
Perform the row operation to make the entry at a .
Step 3.2.2
Simplify .
Step 3.3
Multiply each element of by to make the entry at a .
Step 3.3.1
Multiply each element of by to make the entry at a .
Step 3.3.2
Simplify .
Step 3.4
Perform the row operation to make the entry at a .
Step 3.4.1
Perform the row operation to make the entry at a .
Step 3.4.2
Simplify .
Step 3.5
Perform the row operation to make the entry at a .
Step 3.5.1
Perform the row operation to make the entry at a .
Step 3.5.2
Simplify .
Step 4
Remove rows that are all zeros.
Step 5
Write the matrix as a system of linear equations.
Step 6
Since there are non-trivial solutions to , the vectors are linearly dependent.
Linearly Dependent