Enter a problem...
Linear Algebra Examples
[1213-106-20]⎡⎢⎣1213−106−20⎤⎥⎦
Step 1
To determine if the columns in the matrix are linearly dependent, determine if the equation Ax=0Ax=0 has any non-trivial solutions.
Step 2
Write as an augmented matrix for Ax=0Ax=0.
[12103-1006-200]⎡⎢
⎢⎣12103−1006−200⎤⎥
⎥⎦
Step 3
Step 3.1
Perform the row operation R2=R2-3R1R2=R2−3R1 to make the entry at 2,12,1 a 00.
Step 3.1.1
Perform the row operation R2=R2-3R1R2=R2−3R1 to make the entry at 2,12,1 a 00.
[12103-3⋅1-1-3⋅20-3⋅10-3⋅06-200]⎡⎢
⎢⎣12103−3⋅1−1−3⋅20−3⋅10−3⋅06−200⎤⎥
⎥⎦
Step 3.1.2
Simplify R2R2.
[12100-7-306-200]⎡⎢
⎢⎣12100−7−306−200⎤⎥
⎥⎦
[12100-7-306-200]⎡⎢
⎢⎣12100−7−306−200⎤⎥
⎥⎦
Step 3.2
Perform the row operation R3=R3-6R1R3=R3−6R1 to make the entry at 3,13,1 a 00.
Step 3.2.1
Perform the row operation R3=R3-6R1R3=R3−6R1 to make the entry at 3,13,1 a 00.
[12100-7-306-6⋅1-2-6⋅20-6⋅10-6⋅0]⎡⎢
⎢⎣12100−7−306−6⋅1−2−6⋅20−6⋅10−6⋅0⎤⎥
⎥⎦
Step 3.2.2
Simplify R3R3.
[12100-7-300-14-60]⎡⎢
⎢⎣12100−7−300−14−60⎤⎥
⎥⎦
[12100-7-300-14-60]⎡⎢
⎢⎣12100−7−300−14−60⎤⎥
⎥⎦
Step 3.3
Multiply each element of R2R2 by -17−17 to make the entry at 2,22,2 a 11.
Step 3.3.1
Multiply each element of R2R2 by -17 to make the entry at 2,2 a 1.
[1210-17⋅0-17⋅-7-17⋅-3-17⋅00-14-60]
Step 3.3.2
Simplify R2.
[1210013700-14-60]
[1210013700-14-60]
Step 3.4
Perform the row operation R3=R3+14R2 to make the entry at 3,2 a 0.
Step 3.4.1
Perform the row operation R3=R3+14R2 to make the entry at 3,2 a 0.
[1210013700+14⋅0-14+14⋅1-6+14(37)0+14⋅0]
Step 3.4.2
Simplify R3.
[1210013700000]
[1210013700000]
Step 3.5
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Step 3.5.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅11-2(37)0-2⋅0013700000]
Step 3.5.2
Simplify R1.
[10170013700000]
[10170013700000]
[10170013700000]
Step 4
Remove rows that are all zeros.
[1017001370]
Step 5
Write the matrix as a system of linear equations.
x+17z=0
y+37z=0
Step 6
Since there are non-trivial solutions to Ax=0, the vectors are linearly dependent.
Linearly Dependent