Linear Algebra Examples

Determine if Linearly Dependent [[2],[-1],[4],[1],[2]] , [[1],[2],[-1],[5],[2]] , [[2],[1],[-3],[6],[1]]
[2-1412]⎢ ⎢ ⎢ ⎢ ⎢ ⎢21412⎥ ⎥ ⎥ ⎥ ⎥ ⎥ , [12-152]⎢ ⎢ ⎢ ⎢ ⎢ ⎢12152⎥ ⎥ ⎥ ⎥ ⎥ ⎥ , [21-361]⎢ ⎢ ⎢ ⎢ ⎢ ⎢21361⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 1
To determine if the columns in the matrix are linearly dependent, determine if the equation Ax=0Ax=0 has any non-trivial solutions.
Step 2
Write as an augmented matrix for Ax=0Ax=0.
[2120-12104-1-3015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢21201210413015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3
Find the reduced row echelon form.
Tap for more steps...
Step 3.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Tap for more steps...
Step 3.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[22122202-12104-1-3015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢221222021210413015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.1.2
Simplify R1R1.
[11210-12104-1-3015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢112101210413015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
[11210-12104-1-3015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢112101210413015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.2
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
Tap for more steps...
Step 3.2.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
[11210-1+112+121+110+04-1-3015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢112101+112+121+110+0413015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.2.2
Simplify R2R2.
[11210052204-1-3015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1121005220413015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
[11210052204-1-3015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1121005220413015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.3
Perform the row operation R3=R3-4R1R3=R34R1 to make the entry at 3,13,1 a 00.
Tap for more steps...
Step 3.3.1
Perform the row operation R3=R3-4R1R3=R34R1 to make the entry at 3,13,1 a 00.
[11210052204-41-1-4(12)-3-410-4015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢112100522044114(12)34104015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.3.2
Simplify R3R3.
[11210052200-3-7015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1121005220037015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
[11210052200-3-7015602210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢1121005220037015602210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.4
Perform the row operation R4=R4-R1R4=R4R1 to make the entry at 4,14,1 a 00.
Tap for more steps...
Step 3.4.1
Perform the row operation R4=R4-R1R4=R4R1 to make the entry at 4,14,1 a 00.
[11210052200-3-701-15-126-10-02210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢112100522003701151261002210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.4.2
Simplify R4R4.
[11210052200-3-70092502210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢11210052200370092502210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
[11210052200-3-70092502210]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢11210052200370092502210⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.5
Perform the row operation R5=R5-2R1R5=R52R1 to make the entry at 5,15,1 a 00.
Tap for more steps...
Step 3.5.1
Perform the row operation R5=R5-2R1R5=R52R1 to make the entry at 5,15,1 a 00.
[11210052200-3-70092502-212-2(12)1-210-20]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢112100522003700925022122(12)121020⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.5.2
Simplify R5R5.
[11210052200-3-700925001-10]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢11210052200370092500110⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
[11210052200-3-700925001-10]⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢11210052200370092500110⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Step 3.6
Multiply each element of R2 by 25 to make the entry at 2,2 a 1.
Tap for more steps...
Step 3.6.1
Multiply each element of R2 by 25 to make the entry at 2,2 a 1.
[1121025025522522500-3-700925001-10]
Step 3.6.2
Simplify R2.
[11210014500-3-700925001-10]
[11210014500-3-700925001-10]
Step 3.7
Perform the row operation R3=R3+3R2 to make the entry at 3,2 a 0.
Tap for more steps...
Step 3.7.1
Perform the row operation R3=R3+3R2 to make the entry at 3,2 a 0.
[11210014500+30-3+31-7+3(45)0+300925001-10]
Step 3.7.2
Simplify R3.
[112100145000-23500925001-10]
[112100145000-23500925001-10]
Step 3.8
Perform the row operation R4=R4-92R2 to make the entry at 4,2 a 0.
Tap for more steps...
Step 3.8.1
Perform the row operation R4=R4-92R2 to make the entry at 4,2 a 0.
[112100145000-23500-92092-9215-92450-92001-10]
Step 3.8.2
Simplify R4.
[112100145000-23500075001-10]
[112100145000-23500075001-10]
Step 3.9
Perform the row operation R5=R5-R2 to make the entry at 5,2 a 0.
Tap for more steps...
Step 3.9.1
Perform the row operation R5=R5-R2 to make the entry at 5,2 a 0.
[112100145000-2350007500-01-1-1-450-0]
Step 3.9.2
Simplify R5.
[112100145000-23500075000-950]
[112100145000-23500075000-950]
Step 3.10
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
Tap for more steps...
Step 3.10.1
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
[1121001450-5230-5230-523(-235)-52300075000-950]
Step 3.10.2
Simplify R3.
[112100145000100075000-950]
[112100145000100075000-950]
Step 3.11
Perform the row operation R4=R4-75R3 to make the entry at 4,3 a 0.
Tap for more steps...
Step 3.11.1
Perform the row operation R4=R4-75R3 to make the entry at 4,3 a 0.
[112100145000100-7500-75075-7510-75000-950]
Step 3.11.2
Simplify R4.
[11210014500010000000-950]
[11210014500010000000-950]
Step 3.12
Perform the row operation R5=R5+95R3 to make the entry at 5,3 a 0.
Tap for more steps...
Step 3.12.1
Perform the row operation R5=R5+95R3 to make the entry at 5,3 a 0.
[1121001450001000000+9500+950-95+9510+950]
Step 3.12.2
Simplify R5.
[1121001450001000000000]
[1121001450001000000000]
Step 3.13
Perform the row operation R2=R2-45R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 3.13.1
Perform the row operation R2=R2-45R3 to make the entry at 2,3 a 0.
[112100-4501-45045-4510-450001000000000]
Step 3.13.2
Simplify R2.
[112100100001000000000]
[112100100001000000000]
Step 3.14
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 3.14.1
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
[1-012-01-10-00100001000000000]
Step 3.14.2
Simplify R1.
[112000100001000000000]
[112000100001000000000]
Step 3.15
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
Tap for more steps...
Step 3.15.1
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
[1-12012-1210-1200-1200100001000000000]
Step 3.15.2
Simplify R1.
[10000100001000000000]
[10000100001000000000]
[10000100001000000000]
Step 4
Remove rows that are all zeros.
[100001000010]
Step 5
Write the matrix as a system of linear equations.
x=0
y=0
z=0
Step 6
Since the only solution to Ax=0 is the trivial solution, the vectors are linearly independent.
Linearly Independent
 [x2  12  π  xdx ]