Enter a problem...
Linear Algebra Examples
[2-1412]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣2−1412⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ , [12-152]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣12−152⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ , [21-361]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣21−361⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 1
To determine if the columns in the matrix are linearly dependent, determine if the equation Ax=0Ax=0 has any non-trivial solutions.
Step 2
Write as an augmented matrix for Ax=0Ax=0.
[2120-12104-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣2120−12104−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3
Step 3.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Step 3.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[22122202-12104-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣22122202−12104−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.1.2
Simplify R1R1.
[11210-12104-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210−12104−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[11210-12104-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210−12104−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.2
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
Step 3.2.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
[11210-1+1⋅12+121+1⋅10+04-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210−1+1⋅12+121+1⋅10+04−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.2.2
Simplify R2R2.
[11210052204-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052204−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[11210052204-1-3015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052204−1−3015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.3
Perform the row operation R3=R3-4R1R3=R3−4R1 to make the entry at 3,13,1 a 00.
Step 3.3.1
Perform the row operation R3=R3-4R1R3=R3−4R1 to make the entry at 3,13,1 a 00.
[11210052204-4⋅1-1-4(12)-3-4⋅10-4⋅015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052204−4⋅1−1−4(12)−3−4⋅10−4⋅015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.3.2
Simplify R3R3.
[11210052200-3-7015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052200−3−7015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[11210052200-3-7015602210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052200−3−7015602210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.4
Perform the row operation R4=R4-R1R4=R4−R1 to make the entry at 4,14,1 a 00.
Step 3.4.1
Perform the row operation R4=R4-R1R4=R4−R1 to make the entry at 4,14,1 a 00.
[11210052200-3-701-15-126-10-02210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052200−3−701−15−126−10−02210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.4.2
Simplify R4R4.
[11210052200-3-70092502210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052200−3−70092502210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[11210052200-3-70092502210]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052200−3−70092502210⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.5
Perform the row operation R5=R5-2R1R5=R5−2R1 to make the entry at 5,15,1 a 00.
Step 3.5.1
Perform the row operation R5=R5-2R1R5=R5−2R1 to make the entry at 5,15,1 a 00.
[11210052200-3-70092502-2⋅12-2(12)1-2⋅10-2⋅0]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052200−3−70092502−2⋅12−2(12)1−2⋅10−2⋅0⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.5.2
Simplify R5R5.
[11210052200-3-700925001-10]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052200−3−700925001−10⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
[11210052200-3-700925001-10]⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣11210052200−3−700925001−10⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Step 3.6
Multiply each element of R2 by 25 to make the entry at 2,2 a 1.
Step 3.6.1
Multiply each element of R2 by 25 to make the entry at 2,2 a 1.
[1121025⋅025⋅5225⋅225⋅00-3-700925001-10]
Step 3.6.2
Simplify R2.
[11210014500-3-700925001-10]
[11210014500-3-700925001-10]
Step 3.7
Perform the row operation R3=R3+3R2 to make the entry at 3,2 a 0.
Step 3.7.1
Perform the row operation R3=R3+3R2 to make the entry at 3,2 a 0.
[11210014500+3⋅0-3+3⋅1-7+3(45)0+3⋅00925001-10]
Step 3.7.2
Simplify R3.
[112100145000-23500925001-10]
[112100145000-23500925001-10]
Step 3.8
Perform the row operation R4=R4-92R2 to make the entry at 4,2 a 0.
Step 3.8.1
Perform the row operation R4=R4-92R2 to make the entry at 4,2 a 0.
[112100145000-23500-92⋅092-92⋅15-92⋅450-92⋅001-10]
Step 3.8.2
Simplify R4.
[112100145000-23500075001-10]
[112100145000-23500075001-10]
Step 3.9
Perform the row operation R5=R5-R2 to make the entry at 5,2 a 0.
Step 3.9.1
Perform the row operation R5=R5-R2 to make the entry at 5,2 a 0.
[112100145000-2350007500-01-1-1-450-0]
Step 3.9.2
Simplify R5.
[112100145000-23500075000-950]
[112100145000-23500075000-950]
Step 3.10
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
Step 3.10.1
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
[1121001450-523⋅0-523⋅0-523(-235)-523⋅00075000-950]
Step 3.10.2
Simplify R3.
[112100145000100075000-950]
[112100145000100075000-950]
Step 3.11
Perform the row operation R4=R4-75R3 to make the entry at 4,3 a 0.
Step 3.11.1
Perform the row operation R4=R4-75R3 to make the entry at 4,3 a 0.
[112100145000100-75⋅00-75⋅075-75⋅10-75⋅000-950]
Step 3.11.2
Simplify R4.
[11210014500010000000-950]
[11210014500010000000-950]
Step 3.12
Perform the row operation R5=R5+95R3 to make the entry at 5,3 a 0.
Step 3.12.1
Perform the row operation R5=R5+95R3 to make the entry at 5,3 a 0.
[1121001450001000000+95⋅00+95⋅0-95+95⋅10+95⋅0]
Step 3.12.2
Simplify R5.
[1121001450001000000000]
[1121001450001000000000]
Step 3.13
Perform the row operation R2=R2-45R3 to make the entry at 2,3 a 0.
Step 3.13.1
Perform the row operation R2=R2-45R3 to make the entry at 2,3 a 0.
[112100-45⋅01-45⋅045-45⋅10-45⋅0001000000000]
Step 3.13.2
Simplify R2.
[112100100001000000000]
[112100100001000000000]
Step 3.14
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
Step 3.14.1
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
[1-012-01-10-00100001000000000]
Step 3.14.2
Simplify R1.
[112000100001000000000]
[112000100001000000000]
Step 3.15
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
Step 3.15.1
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
[1-12⋅012-12⋅10-12⋅00-12⋅00100001000000000]
Step 3.15.2
Simplify R1.
[10000100001000000000]
[10000100001000000000]
[10000100001000000000]
Step 4
Remove rows that are all zeros.
[100001000010]
Step 5
Write the matrix as a system of linear equations.
x=0
y=0
z=0
Step 6
Since the only solution to Ax=0 is the trivial solution, the vectors are linearly independent.
Linearly Independent