Linear Algebra Examples

Find the Cube Roots of a Complex Number 3(cos(pi)+isin(pi))
3(cos(π)+isin(π))3(cos(π)+isin(π))
Step 1
Calculate the distance from (a,b)(a,b) to the origin using the formula r=a2+b2r=a2+b2.
r=(3cos(π))2+(sin(π)3)2r=(3cos(π))2+(sin(π)3)2
Step 2
Simplify (3cos(π))2+(sin(π)3)2(3cos(π))2+(sin(π)3)2.
Tap for more steps...
Step 2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
r=(3(-cos(0)))2+(sin(π)3)2r=(3(cos(0)))2+(sin(π)3)2
Step 2.2
The exact value of cos(0)cos(0) is 11.
r=(3(-11))2+(sin(π)3)2r=(3(11))2+(sin(π)3)2
Step 2.3
Multiply 3(-11)3(11).
Tap for more steps...
Step 2.3.1
Multiply -11 by 11.
r=(3-1)2+(sin(π)3)2r=(31)2+(sin(π)3)2
Step 2.3.2
Multiply 33 by -11.
r=(-3)2+(sin(π)3)2r=(3)2+(sin(π)3)2
r=(-3)2+(sin(π)3)2r=(3)2+(sin(π)3)2
Step 2.4
Raise -33 to the power of 22.
r=9+(sin(π)3)2r=9+(sin(π)3)2
Step 2.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
r=9+(sin(0)3)2r=9+(sin(0)3)2
Step 2.6
The exact value of sin(0)sin(0) is 00.
r=9+(03)2r=9+(03)2
Step 2.7
Multiply 00 by 33.
r=9+02r=9+02
Step 2.8
Raising 00 to any positive power yields 00.
r=9+0r=9+0
Step 2.9
Add 99 and 00.
r=9r=9
Step 2.10
Rewrite 99 as 3232.
r=32r=32
Step 2.11
Pull terms out from under the radical, assuming positive real numbers.
r=3r=3
r=3r=3
Step 3
Calculate reference angle θ̂=arctan(|ba|)θˆ=arctan(ba).
θ̂=arctan(|sin(π)33cos(π)|)θˆ=arctan(sin(π)33cos(π))
Step 4
Simplify arctan(|sin(π)33cos(π)|)arctan(sin(π)33cos(π)).
Tap for more steps...
Step 4.1
Cancel the common factor of 33.
Tap for more steps...
Step 4.1.1
Cancel the common factor.
θ̂=arctan(|sin(π)33cos(π)|)
Step 4.1.2
Rewrite the expression.
θ̂=arctan(|sin(π)cos(π)|)
θ̂=arctan(|sin(π)cos(π)|)
Step 4.2
Simplify the numerator.
Tap for more steps...
Step 4.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
θ̂=arctan(|sin(0)cos(π)|)
Step 4.2.2
The exact value of sin(0) is 0.
θ̂=arctan(|0cos(π)|)
θ̂=arctan(|0cos(π)|)
Step 4.3
Simplify the denominator.
Tap for more steps...
Step 4.3.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
θ̂=arctan(|0-cos(0)|)
Step 4.3.2
The exact value of cos(0) is 1.
θ̂=arctan(|0-11|)
Step 4.3.3
Multiply -1 by 1.
θ̂=arctan(|0-1|)
θ̂=arctan(|0-1|)
Step 4.4
Simplify the expression.
Tap for more steps...
Step 4.4.1
Move the negative one from the denominator of 0-1.
θ̂=arctan(|-10|)
Step 4.4.2
Multiply -1 by 0.
θ̂=arctan(|0|)
θ̂=arctan(|0|)
Step 4.5
The absolute value is the distance between a number and zero. The distance between 0 and 0 is 0.
θ̂=arctan(0)
Step 4.6
The exact value of arctan(0) is 0.
θ̂=0
θ̂=0
Step 5
Find the quadrant.
Tap for more steps...
Step 5.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
(3(-cos(0)),sin(π)3)
Step 5.2
The exact value of cos(0) is 1.
(3(-11),sin(π)3)
Step 5.3
Multiply 3(-11).
Tap for more steps...
Step 5.3.1
Multiply -1 by 1.
(3-1,sin(π)3)
Step 5.3.2
Multiply 3 by -1.
(-3,sin(π)3)
(-3,sin(π)3)
Step 5.4
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
(-3,sin(0)3)
Step 5.5
The exact value of sin(0) is 0.
(-3,03)
Step 5.6
Multiply 0 by 3.
(-3,0)
Step 5.7
Since the x-coordinate is negative and the y-coordinate is 0, the point is located on x-axis between the second and third quadrants. The quadrants are labeled in counter-clockwise order, starting in the upper-right.
Between Quadrant 2 and 3
Between Quadrant 2 and 3
Step 6
Use the formula to find the roots of the complex number.
(a+bi)1n=r1ncis(θ+2πkn), k=0,1,,n-1
Step 7
Substitute r, n, and θ into the formula.
Tap for more steps...
Step 7.1
Combine (3)13 and θ+2πk3.
cis(3)13(θ+2πk)3
Step 7.2
Combine c and (3)13(θ+2πk)3.
isc((3)13(θ+2πk))3
Step 7.3
Combine i and c((3)13(θ+2πk))3.
si(c((3)13(θ+2πk)))3
Step 7.4
Combine s and i(c((3)13(θ+2πk)))3.
s(i(c((3)13(θ+2πk))))3
Step 7.5
Remove parentheses.
Tap for more steps...
Step 7.5.1
Remove parentheses.
s(i(c(313(θ+2πk))))3
Step 7.5.2
Remove parentheses.
s(i(c313(θ+2πk)))3
Step 7.5.3
Remove parentheses.
s(i(c313)(θ+2πk))3
Step 7.5.4
Remove parentheses.
s(ic313(θ+2πk))3
Step 7.5.5
Remove parentheses.
s(ic313)(θ+2πk)3
Step 7.5.6
Remove parentheses.
s(ic)313(θ+2πk)3
Step 7.5.7
Remove parentheses.
sic313(θ+2πk)3
sic313(θ+2πk)3
sic313(θ+2πk)3
Step 8
Substitute k=0 into the formula and simplify.
Tap for more steps...
Step 8.1
Remove parentheses.
k=0:313cis(θ+2π(0)3)
Step 8.2
Multiply 2π(0).
Tap for more steps...
Step 8.2.1
Multiply 0 by 2.
k=0:313cis(θ+0π3)
Step 8.2.2
Multiply 0 by π.
k=0:313cis(θ+03)
k=0:313cis(θ+03)
k=0:313cis(θ+03)
Step 9
Substitute k=1 into the formula and simplify.
Tap for more steps...
Step 9.1
Remove parentheses.
k=1:313cis(θ+2π(1)3)
Step 9.2
Multiply 2 by 1.
k=1:313cis(θ+2π3)
k=1:313cis(θ+2π3)
Step 10
Substitute k=2 into the formula and simplify.
Tap for more steps...
Step 10.1
Remove parentheses.
k=2:313cis(θ+2π(2)3)
Step 10.2
Multiply 2 by 2.
k=2:313cis(θ+4π3)
k=2:313cis(θ+4π3)
Step 11
List the solutions.
k=0:313cis(θ+03)
k=1:313cis(θ+2π3)
k=2:313cis(θ+4π3)
 [x2  12  π  xdx ]