Enter a problem...
Linear Algebra Examples
3(cos(π)+isin(π))3(cos(π)+isin(π))
Step 1
Calculate the distance from (a,b)(a,b) to the origin using the formula r=√a2+b2r=√a2+b2.
r=√(3cos(π))2+(sin(π)⋅3)2r=√(3cos(π))2+(sin(π)⋅3)2
Step 2
Step 2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
r=√(3(-cos(0)))2+(sin(π)⋅3)2r=√(3(−cos(0)))2+(sin(π)⋅3)2
Step 2.2
The exact value of cos(0)cos(0) is 11.
r=√(3(-1⋅1))2+(sin(π)⋅3)2r=√(3(−1⋅1))2+(sin(π)⋅3)2
Step 2.3
Multiply 3(-1⋅1)3(−1⋅1).
Step 2.3.1
Multiply -1−1 by 11.
r=√(3⋅-1)2+(sin(π)⋅3)2r=√(3⋅−1)2+(sin(π)⋅3)2
Step 2.3.2
Multiply 33 by -1−1.
r=√(-3)2+(sin(π)⋅3)2r=√(−3)2+(sin(π)⋅3)2
r=√(-3)2+(sin(π)⋅3)2r=√(−3)2+(sin(π)⋅3)2
Step 2.4
Raise -3−3 to the power of 22.
r=√9+(sin(π)⋅3)2r=√9+(sin(π)⋅3)2
Step 2.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
r=√9+(sin(0)⋅3)2r=√9+(sin(0)⋅3)2
Step 2.6
The exact value of sin(0)sin(0) is 00.
r=√9+(0⋅3)2r=√9+(0⋅3)2
Step 2.7
Multiply 00 by 33.
r=√9+02r=√9+02
Step 2.8
Raising 00 to any positive power yields 00.
r=√9+0r=√9+0
Step 2.9
Add 99 and 00.
r=√9r=√9
Step 2.10
Rewrite 99 as 3232.
r=√32r=√32
Step 2.11
Pull terms out from under the radical, assuming positive real numbers.
r=3r=3
r=3r=3
Step 3
Calculate reference angle θ̂=arctan(|ba|)θˆ=arctan(∣∣∣ba∣∣∣).
θ̂=arctan(|sin(π)⋅33cos(π)|)θˆ=arctan(∣∣∣sin(π)⋅33cos(π)∣∣∣)
Step 4
Step 4.1
Cancel the common factor of 33.
Step 4.1.1
Cancel the common factor.
θ̂=arctan(|sin(π)⋅33cos(π)|)
Step 4.1.2
Rewrite the expression.
θ̂=arctan(|sin(π)cos(π)|)
θ̂=arctan(|sin(π)cos(π)|)
Step 4.2
Simplify the numerator.
Step 4.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
θ̂=arctan(|sin(0)cos(π)|)
Step 4.2.2
The exact value of sin(0) is 0.
θ̂=arctan(|0cos(π)|)
θ̂=arctan(|0cos(π)|)
Step 4.3
Simplify the denominator.
Step 4.3.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
θ̂=arctan(|0-cos(0)|)
Step 4.3.2
The exact value of cos(0) is 1.
θ̂=arctan(|0-1⋅1|)
Step 4.3.3
Multiply -1 by 1.
θ̂=arctan(|0-1|)
θ̂=arctan(|0-1|)
Step 4.4
Simplify the expression.
Step 4.4.1
Move the negative one from the denominator of 0-1.
θ̂=arctan(|-1⋅0|)
Step 4.4.2
Multiply -1 by 0.
θ̂=arctan(|0|)
θ̂=arctan(|0|)
Step 4.5
The absolute value is the distance between a number and zero. The distance between 0 and 0 is 0.
θ̂=arctan(0)
Step 4.6
The exact value of arctan(0) is 0.
θ̂=0
θ̂=0
Step 5
Step 5.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
(3(-cos(0)),sin(π)⋅3)
Step 5.2
The exact value of cos(0) is 1.
(3(-1⋅1),sin(π)⋅3)
Step 5.3
Multiply 3(-1⋅1).
Step 5.3.1
Multiply -1 by 1.
(3⋅-1,sin(π)⋅3)
Step 5.3.2
Multiply 3 by -1.
(-3,sin(π)⋅3)
(-3,sin(π)⋅3)
Step 5.4
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
(-3,sin(0)⋅3)
Step 5.5
The exact value of sin(0) is 0.
(-3,0⋅3)
Step 5.6
Multiply 0 by 3.
(-3,0)
Step 5.7
Since the x-coordinate is negative and the y-coordinate is 0, the point is located on x-axis between the second and third quadrants. The quadrants are labeled in counter-clockwise order, starting in the upper-right.
Between Quadrant 2 and 3
Between Quadrant 2 and 3
Step 6
Use the formula to find the roots of the complex number.
(a+bi)1n=r1ncis(θ+2πkn), k=0,1,…,n-1
Step 7
Step 7.1
Combine (3)13 and θ+2πk3.
cis(3)13(θ+2πk)3
Step 7.2
Combine c and (3)13(θ+2πk)3.
isc((3)13(θ+2πk))3
Step 7.3
Combine i and c((3)13(θ+2πk))3.
si(c((3)13(θ+2πk)))3
Step 7.4
Combine s and i(c((3)13(θ+2πk)))3.
s(i(c((3)13(θ+2πk))))3
Step 7.5
Remove parentheses.
Step 7.5.1
Remove parentheses.
s(i(c(313(θ+2πk))))3
Step 7.5.2
Remove parentheses.
s(i(c⋅313(θ+2πk)))3
Step 7.5.3
Remove parentheses.
s(i(c⋅313)(θ+2πk))3
Step 7.5.4
Remove parentheses.
s(ic⋅313(θ+2πk))3
Step 7.5.5
Remove parentheses.
s(ic⋅313)(θ+2πk)3
Step 7.5.6
Remove parentheses.
s(ic)⋅313(θ+2πk)3
Step 7.5.7
Remove parentheses.
sic⋅313(θ+2πk)3
sic⋅313(θ+2πk)3
sic⋅313(θ+2πk)3
Step 8
Step 8.1
Remove parentheses.
k=0:313cis(θ+2π(0)3)
Step 8.2
Multiply 2π(0).
Step 8.2.1
Multiply 0 by 2.
k=0:313cis(θ+0π3)
Step 8.2.2
Multiply 0 by π.
k=0:313cis(θ+03)
k=0:313cis(θ+03)
k=0:313cis(θ+03)
Step 9
Step 9.1
Remove parentheses.
k=1:313cis(θ+2π(1)3)
Step 9.2
Multiply 2 by 1.
k=1:313cis(θ+2π3)
k=1:313cis(θ+2π3)
Step 10
Step 10.1
Remove parentheses.
k=2:313cis(θ+2π(2)3)
Step 10.2
Multiply 2 by 2.
k=2:313cis(θ+4π3)
k=2:313cis(θ+4π3)
Step 11
List the solutions.
k=0:313cis(θ+03)
k=1:313cis(θ+2π3)
k=2:313cis(θ+4π3)