Enter a problem...
Linear Algebra Examples
[32103518]⋅F=[-808012][32103518]⋅F=[−808012]
Step 1
Step 1.1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
Step 1.2
Find the determinant.
Step 1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
32(18)-35⋅10
Step 1.2.2
Simplify the determinant.
Step 1.2.2.1
Simplify each term.
Step 1.2.2.1.1
Cancel the common factor of 8.
Step 1.2.2.1.1.1
Factor 8 out of 32.
8(4)18-35⋅10
Step 1.2.2.1.1.2
Cancel the common factor.
8⋅418-35⋅10
Step 1.2.2.1.1.3
Rewrite the expression.
4-35⋅10
4-35⋅10
Step 1.2.2.1.2
Cancel the common factor of 5.
Step 1.2.2.1.2.1
Move the leading negative in -35 into the numerator.
4+-35⋅10
Step 1.2.2.1.2.2
Factor 5 out of 10.
4+-35⋅(5(2))
Step 1.2.2.1.2.3
Cancel the common factor.
4+-35⋅(5⋅2)
Step 1.2.2.1.2.4
Rewrite the expression.
4-3⋅2
4-3⋅2
Step 1.2.2.1.3
Multiply -3 by 2.
4-6
4-6
Step 1.2.2.2
Subtract 6 from 4.
-2
-2
-2
Step 1.3
Since the determinant is non-zero, the inverse exists.
Step 1.4
Substitute the known values into the formula for the inverse.
1-2[18-10-3532]
Step 1.5
Move the negative in front of the fraction.
-12[18-10-3532]
Step 1.6
Multiply -12 by each element of the matrix.
[-12⋅18-12⋅-10-12(-35)-12⋅32]
Step 1.7
Simplify each element in the matrix.
Step 1.7.1
Multiply -12⋅18.
Step 1.7.1.1
Multiply 18 by 12.
[-18⋅2-12⋅-10-12(-35)-12⋅32]
Step 1.7.1.2
Multiply 8 by 2.
[-116-12⋅-10-12(-35)-12⋅32]
[-116-12⋅-10-12(-35)-12⋅32]
Step 1.7.2
Cancel the common factor of 2.
Step 1.7.2.1
Move the leading negative in -12 into the numerator.
[-116-12⋅-10-12(-35)-12⋅32]
Step 1.7.2.2
Factor 2 out of -10.
[-116-12⋅(2(-5))-12(-35)-12⋅32]
Step 1.7.2.3
Cancel the common factor.
[-116-12⋅(2⋅-5)-12(-35)-12⋅32]
Step 1.7.2.4
Rewrite the expression.
[-116-1⋅-5-12(-35)-12⋅32]
[-116-1⋅-5-12(-35)-12⋅32]
Step 1.7.3
Multiply -1 by -5.
[-1165-12(-35)-12⋅32]
Step 1.7.4
Multiply -12(-35).
Step 1.7.4.1
Multiply -1 by -1.
[-11651(12)35-12⋅32]
Step 1.7.4.2
Multiply 12 by 1.
[-116512⋅35-12⋅32]
Step 1.7.4.3
Multiply 12 by 35.
[-116532⋅5-12⋅32]
Step 1.7.4.4
Multiply 2 by 5.
[-1165310-12⋅32]
[-1165310-12⋅32]
Step 1.7.5
Cancel the common factor of 2.
Step 1.7.5.1
Move the leading negative in -12 into the numerator.
[-1165310-12⋅32]
Step 1.7.5.2
Factor 2 out of 32.
[-1165310-12⋅(2(16))]
Step 1.7.5.3
Cancel the common factor.
[-1165310-12⋅(2⋅16)]
Step 1.7.5.4
Rewrite the expression.
[-1165310-1⋅16]
[-1165310-1⋅16]
Step 1.7.6
Multiply -1 by 16.
[-1165310-16]
[-1165310-16]
[-1165310-16]
Step 2
Multiply both sides by the inverse of [32103518].
[-1165310-16][32103518]F=[-1165310-16][-808012]
Step 3
Step 3.1
Multiply [-1165310-16][32103518].
Step 3.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×2 and the second matrix is 2×2.
Step 3.1.2
Multiply each row in the first matrix by each column in the second matrix.
[-116⋅32+5(35)-116⋅10+5(18)310⋅32-16(35)310⋅10-16(18)]F=[-1165310-16][-808012]
Step 3.1.3
Simplify each element of the matrix by multiplying out all the expressions.
[1001]F=[-1165310-16][-808012]
[1001]F=[-1165310-16][-808012]
Step 3.2
Multiplying the identity matrix by any matrix A is the matrix A itself.
F=[-1165310-16][-808012]
Step 3.3
Multiply [-1165310-16][-808012].
Step 3.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×2 and the second matrix is 2×2.
Step 3.3.2
Multiply each row in the first matrix by each column in the second matrix.
F=[-116⋅-80+5⋅1-116⋅80+5⋅2310⋅-80-16⋅1310⋅80-16⋅2]
Step 3.3.3
Simplify each element of the matrix by multiplying out all the expressions.
F=[105-40-8]
F=[105-40-8]
F=[105-40-8]