Enter a problem...
Linear Algebra Examples
5x+3=4y5x+3=4y , y=8x-2y=8x−2
Step 1
Step 1.1
Subtract 4y4y from both sides of the equation.
5x+3-4y=05x+3−4y=0
y=8x-2y=8x−2
Step 1.2
Subtract 33 from both sides of the equation.
5x-4y=-35x−4y=−3
y=8x-2y=8x−2
Step 1.3
Subtract 8x8x from both sides of the equation.
5x-4y=-35x−4y=−3
y-8x=-2y−8x=−2
Step 1.4
Reorder yy and -8x−8x.
5x-4y=-35x−4y=−3
-8x+y=-2−8x+y=−2
5x-4y=-35x−4y=−3
-8x+y=-2−8x+y=−2
Step 2
Represent the system of equations in matrix format.
[5-4-81][xy]=[-3-2][5−4−81][xy]=[−3−2]
Step 3
Step 3.1
Write [5-4-81][5−4−81] in determinant notation.
|5-4-81|∣∣∣5−4−81∣∣∣
Step 3.2
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
5⋅1-(-8⋅-4)5⋅1−(−8⋅−4)
Step 3.3
Simplify the determinant.
Step 3.3.1
Simplify each term.
Step 3.3.1.1
Multiply 55 by 11.
5-(-8⋅-4)5−(−8⋅−4)
Step 3.3.1.2
Multiply -(-8⋅-4)−(−8⋅−4).
Step 3.3.1.2.1
Multiply -8−8 by -4−4.
5-1⋅325−1⋅32
Step 3.3.1.2.2
Multiply -1−1 by 3232.
5-325−32
5-325−32
5-325−32
Step 3.3.2
Subtract 3232 from 55.
-27−27
-27−27
D=-27D=−27
Step 4
Since the determinant is not 00, the system can be solved using Cramer's Rule.
Step 5
Step 5.1
Replace column 11 of the coefficient matrix that corresponds to the xx-coefficients of the system with [-3-2][−3−2].
|-3-4-21|∣∣∣−3−4−21∣∣∣
Step 5.2
Find the determinant.
Step 5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-3⋅1-(-2⋅-4)−3⋅1−(−2⋅−4)
Step 5.2.2
Simplify the determinant.
Step 5.2.2.1
Simplify each term.
Step 5.2.2.1.1
Multiply -3−3 by 11.
-3-(-2⋅-4)−3−(−2⋅−4)
Step 5.2.2.1.2
Multiply -(-2⋅-4)−(−2⋅−4).
Step 5.2.2.1.2.1
Multiply -2−2 by -4−4.
-3-1⋅8−3−1⋅8
Step 5.2.2.1.2.2
Multiply -1−1 by 88.
-3-8−3−8
-3-8−3−8
-3-8−3−8
Step 5.2.2.2
Subtract 88 from -3−3.
-11−11
-11−11
Dx=-11Dx=−11
Step 5.3
Use the formula to solve for xx.
x=DxDx=DxD
Step 5.4
Substitute -27−27 for DD and -11−11 for DxDx in the formula.
x=-11-27x=−11−27
Step 5.5
Dividing two negative values results in a positive value.
x=1127x=1127
x=1127x=1127
Step 6
Step 6.1
Replace column 22 of the coefficient matrix that corresponds to the yy-coefficients of the system with [-3-2][−3−2].
|5-3-8-2|∣∣∣5−3−8−2∣∣∣
Step 6.2
Find the determinant.
Step 6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
5⋅-2-(-8⋅-3)5⋅−2−(−8⋅−3)
Step 6.2.2
Simplify the determinant.
Step 6.2.2.1
Simplify each term.
Step 6.2.2.1.1
Multiply 55 by -2−2.
-10-(-8⋅-3)−10−(−8⋅−3)
Step 6.2.2.1.2
Multiply -(-8⋅-3)−(−8⋅−3).
Step 6.2.2.1.2.1
Multiply -8−8 by -3−3.
-10-1⋅24−10−1⋅24
Step 6.2.2.1.2.2
Multiply -1−1 by 2424.
-10-24−10−24
-10-24−10−24
-10-24−10−24
Step 6.2.2.2
Subtract 2424 from -10−10.
-34−34
-34−34
Dy=-34Dy=−34
Step 6.3
Use the formula to solve for yy.
y=DyDy=DyD
Step 6.4
Substitute -27−27 for DD and -34−34 for DyDy in the formula.
y=-34-27y=−34−27
Step 6.5
Dividing two negative values results in a positive value.
y=3427y=3427
y=3427y=3427
Step 7
List the solution to the system of equations.
x=1127x=1127
y=3427y=3427