Linear Algebra Examples

Solve Using a Matrix with Cramer's Rule 5x+3=4y , y=8x-2
5x+3=4y5x+3=4y , y=8x-2y=8x2
Step 1
Move all of the variables to the left side of each equation.
Tap for more steps...
Step 1.1
Subtract 4y4y from both sides of the equation.
5x+3-4y=05x+34y=0
y=8x-2y=8x2
Step 1.2
Subtract 33 from both sides of the equation.
5x-4y=-35x4y=3
y=8x-2y=8x2
Step 1.3
Subtract 8x8x from both sides of the equation.
5x-4y=-35x4y=3
y-8x=-2y8x=2
Step 1.4
Reorder yy and -8x8x.
5x-4y=-35x4y=3
-8x+y=-28x+y=2
5x-4y=-35x4y=3
-8x+y=-28x+y=2
Step 2
Represent the system of equations in matrix format.
[5-4-81][xy]=[-3-2][5481][xy]=[32]
Step 3
Find the determinant of the coefficient matrix [5-4-81][5481].
Tap for more steps...
Step 3.1
Write [5-4-81][5481] in determinant notation.
|5-4-81|5481
Step 3.2
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
51-(-8-4)51(84)
Step 3.3
Simplify the determinant.
Tap for more steps...
Step 3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.1.1
Multiply 55 by 11.
5-(-8-4)5(84)
Step 3.3.1.2
Multiply -(-8-4)(84).
Tap for more steps...
Step 3.3.1.2.1
Multiply -88 by -44.
5-1325132
Step 3.3.1.2.2
Multiply -11 by 3232.
5-32532
5-32532
5-32532
Step 3.3.2
Subtract 3232 from 55.
-2727
-2727
D=-27D=27
Step 4
Since the determinant is not 00, the system can be solved using Cramer's Rule.
Step 5
Find the value of xx by Cramer's Rule, which states that x=DxDx=DxD.
Tap for more steps...
Step 5.1
Replace column 11 of the coefficient matrix that corresponds to the xx-coefficients of the system with [-3-2][32].
|-3-4-21|3421
Step 5.2
Find the determinant.
Tap for more steps...
Step 5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-31-(-2-4)31(24)
Step 5.2.2
Simplify the determinant.
Tap for more steps...
Step 5.2.2.1
Simplify each term.
Tap for more steps...
Step 5.2.2.1.1
Multiply -33 by 11.
-3-(-2-4)3(24)
Step 5.2.2.1.2
Multiply -(-2-4)(24).
Tap for more steps...
Step 5.2.2.1.2.1
Multiply -22 by -44.
-3-18318
Step 5.2.2.1.2.2
Multiply -11 by 88.
-3-838
-3-838
-3-838
Step 5.2.2.2
Subtract 88 from -33.
-1111
-1111
Dx=-11Dx=11
Step 5.3
Use the formula to solve for xx.
x=DxDx=DxD
Step 5.4
Substitute -2727 for DD and -1111 for DxDx in the formula.
x=-11-27x=1127
Step 5.5
Dividing two negative values results in a positive value.
x=1127x=1127
x=1127x=1127
Step 6
Find the value of yy by Cramer's Rule, which states that y=DyDy=DyD.
Tap for more steps...
Step 6.1
Replace column 22 of the coefficient matrix that corresponds to the yy-coefficients of the system with [-3-2][32].
|5-3-8-2|5382
Step 6.2
Find the determinant.
Tap for more steps...
Step 6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
5-2-(-8-3)52(83)
Step 6.2.2
Simplify the determinant.
Tap for more steps...
Step 6.2.2.1
Simplify each term.
Tap for more steps...
Step 6.2.2.1.1
Multiply 55 by -22.
-10-(-8-3)10(83)
Step 6.2.2.1.2
Multiply -(-8-3)(83).
Tap for more steps...
Step 6.2.2.1.2.1
Multiply -88 by -33.
-10-12410124
Step 6.2.2.1.2.2
Multiply -11 by 2424.
-10-241024
-10-241024
-10-241024
Step 6.2.2.2
Subtract 2424 from -1010.
-3434
-3434
Dy=-34Dy=34
Step 6.3
Use the formula to solve for yy.
y=DyDy=DyD
Step 6.4
Substitute -2727 for DD and -3434 for DyDy in the formula.
y=-34-27y=3427
Step 6.5
Dividing two negative values results in a positive value.
y=3427y=3427
y=3427y=3427
Step 7
List the solution to the system of equations.
x=1127x=1127
y=3427y=3427
 [x2  12  π  xdx ]  x2  12  π  xdx