Linear Algebra Examples

Find the Inverse [[0,-1,4],[6,0,-2],[1,0,0]]
[0-1460-2100]
Step 1
Find the determinant.
Tap for more steps...
Step 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Tap for more steps...
Step 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|6-210|
Step 1.1.4
Multiply element a12 by its cofactor.
1|6-210|
Step 1.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|0410|
Step 1.1.6
Multiply element a22 by its cofactor.
0|0410|
Step 1.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|046-2|
Step 1.1.8
Multiply element a32 by its cofactor.
0|046-2|
Step 1.1.9
Add the terms together.
1|6-210|+0|0410|+0|046-2|
1|6-210|+0|0410|+0|046-2|
Step 1.2
Multiply 0 by |0410|.
1|6-210|+0+0|046-2|
Step 1.3
Multiply 0 by |046-2|.
1|6-210|+0+0
Step 1.4
Evaluate |6-210|.
Tap for more steps...
Step 1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(60-1-2)+0+0
Step 1.4.2
Simplify the determinant.
Tap for more steps...
Step 1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.1.1
Multiply 6 by 0.
1(0-1-2)+0+0
Step 1.4.2.1.2
Multiply -1 by -2.
1(0+2)+0+0
1(0+2)+0+0
Step 1.4.2.2
Add 0 and 2.
12+0+0
12+0+0
12+0+0
Step 1.5
Simplify the determinant.
Tap for more steps...
Step 1.5.1
Multiply 2 by 1.
2+0+0
Step 1.5.2
Add 2 and 0.
2+0
Step 1.5.3
Add 2 and 0.
2
2
2
Step 2
Since the determinant is non-zero, the inverse exists.
Step 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[0-1410060-2010100001]
Step 4
Find the reduced row echelon form.
Tap for more steps...
Step 4.1
Swap R2 with R1 to put a nonzero entry at 1,1.
[60-20100-14100100001]
Step 4.2
Multiply each element of R1 by 16 to make the entry at 1,1 a 1.
Tap for more steps...
Step 4.2.1
Multiply each element of R1 by 16 to make the entry at 1,1 a 1.
[6606-260616060-14100100001]
Step 4.2.2
Simplify R1.
[10-1301600-14100100001]
[10-1301600-14100100001]
Step 4.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Tap for more steps...
Step 4.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[10-1301600-141001-10-00+130-00-161-0]
Step 4.3.2
Simplify R3.
[10-1301600-1410000130-161]
[10-1301600-1410000130-161]
Step 4.4
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
Tap for more steps...
Step 4.4.1
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
[10-130160-0--1-14-11-0-000130-161]
Step 4.4.2
Simplify R2.
[10-13016001-4-10000130-161]
[10-13016001-4-10000130-161]
Step 4.5
Multiply each element of R3 by 3 to make the entry at 3,3 a 1.
Tap for more steps...
Step 4.5.1
Multiply each element of R3 by 3 to make the entry at 3,3 a 1.
[10-13016001-4-10030303(13)303(-16)31]
Step 4.5.2
Simplify R3.
[10-13016001-4-1000010-123]
[10-13016001-4-1000010-123]
Step 4.6
Perform the row operation R2=R2+4R3 to make the entry at 2,3 a 0.
Tap for more steps...
Step 4.6.1
Perform the row operation R2=R2+4R3 to make the entry at 2,3 a 0.
[10-1301600+401+40-4+41-1+400+4(-12)0+430010-123]
Step 4.6.2
Simplify R2.
[10-130160010-1-2120010-123]
[10-130160010-1-2120010-123]
Step 4.7
Perform the row operation R1=R1+13R3 to make the entry at 1,3 a 0.
Tap for more steps...
Step 4.7.1
Perform the row operation R1=R1+13R3 to make the entry at 1,3 a 0.
[1+1300+130-13+1310+13016+13(-12)0+133010-1-2120010-123]
Step 4.7.2
Simplify R1.
[100001010-1-2120010-123]
[100001010-1-2120010-123]
[100001010-1-2120010-123]
Step 5
The right half of the reduced row echelon form is the inverse.
[001-1-2120-123]
 [x2  12  π  xdx ]