Enter a problem...
Finite Math Examples
9x2+4y2-36=09x2+4y2−36=0
Step 1
Step 1.1
Subtract 4y24y2 from both sides of the equation.
9x2-36=-4y29x2−36=−4y2
Step 1.2
Add 3636 to both sides of the equation.
9x2=-4y2+369x2=−4y2+36
9x2=-4y2+369x2=−4y2+36
Step 2
Step 2.1
Divide each term in 9x2=-4y2+369x2=−4y2+36 by 99.
9x29=-4y29+3699x29=−4y29+369
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 99.
Step 2.2.1.1
Cancel the common factor.
9x29=-4y29+369
Step 2.2.1.2
Divide x2 by 1.
x2=-4y29+369
x2=-4y29+369
x2=-4y29+369
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Move the negative in front of the fraction.
x2=-4y29+369
Step 2.3.1.2
Divide 36 by 9.
x2=-4y29+4
x2=-4y29+4
x2=-4y29+4
x2=-4y29+4
Step 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√-4y29+4
Step 4
Step 4.1
Factor 4 out of -4y29+4.
Step 4.1.1
Factor 4 out of -4y29.
x=±√4(-y29)+4
Step 4.1.2
Factor 4 out of 4.
x=±√4(-y29)+4(1)
Step 4.1.3
Factor 4 out of 4(-y29)+4(1).
x=±√4(-y29+1)
x=±√4(-y29+1)
Step 4.2
Simplify the expression.
Step 4.2.1
Rewrite 1 as 12.
x=±√4(-y29+12)
Step 4.2.2
Rewrite y29 as (y3)2.
x=±√4(-(y3)2+12)
Step 4.2.3
Reorder -(y3)2 and 12.
x=±√4(12-(y3)2)
x=±√4(12-(y3)2)
Step 4.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=y3.
x=±√4(1+y3)(1-y3)
Step 4.4
Write 1 as a fraction with a common denominator.
x=±√4(33+y3)(1-y3)
Step 4.5
Combine the numerators over the common denominator.
x=±√43+y3(1-y3)
Step 4.6
Write 1 as a fraction with a common denominator.
x=±√43+y3(33-y3)
Step 4.7
Combine the numerators over the common denominator.
x=±√43+y33-y3
Step 4.8
Combine exponents.
Step 4.8.1
Combine 4 and 3+y3.
x=±√4(3+y)3⋅3-y3
Step 4.8.2
Multiply 4(3+y)3 by 3-y3.
x=±√4(3+y)(3-y)3⋅3
Step 4.8.3
Multiply 3 by 3.
x=±√4(3+y)(3-y)9
x=±√4(3+y)(3-y)9
Step 4.9
Rewrite 4(3+y)(3-y)9 as (23)2((3+y)(3-y)).
Step 4.9.1
Factor the perfect power 22 out of 4(3+y)(3-y).
x=±√22((3+y)(3-y))9
Step 4.9.2
Factor the perfect power 32 out of 9.
x=±√22((3+y)(3-y))32⋅1
Step 4.9.3
Rearrange the fraction 22((3+y)(3-y))32⋅1.
x=±√(23)2((3+y)(3-y))
x=±√(23)2((3+y)(3-y))
Step 4.10
Pull terms out from under the radical.
x=±23√(3+y)(3-y)
Step 4.11
Combine 23 and √(3+y)(3-y).
x=±2√(3+y)(3-y)3
x=±2√(3+y)(3-y)3
Step 5
Step 5.1
First, use the positive value of the ± to find the first solution.
x=2√(3+y)(3-y)3
Step 5.2
Next, use the negative value of the ± to find the second solution.
x=-2√(3+y)(3-y)3
Step 5.3
The complete solution is the result of both the positive and negative portions of the solution.
x=2√(3+y)(3-y)3
x=-2√(3+y)(3-y)3
x=2√(3+y)(3-y)3
x=-2√(3+y)(3-y)3