Enter a problem...
Finite Math Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Simplify each term.
Step 2.2.1
Combine and .
Step 2.2.2
Move to the left of .
Step 2.3
Subtract from both sides of the equation.
Step 2.4
Multiply both sides of the equation by .
Step 2.5
Simplify both sides of the equation.
Step 2.5.1
Simplify the left side.
Step 2.5.1.1
Simplify .
Step 2.5.1.1.1
Cancel the common factor of .
Step 2.5.1.1.1.1
Move the leading negative in into the numerator.
Step 2.5.1.1.1.2
Move the leading negative in into the numerator.
Step 2.5.1.1.1.3
Factor out of .
Step 2.5.1.1.1.4
Cancel the common factor.
Step 2.5.1.1.1.5
Rewrite the expression.
Step 2.5.1.1.2
Cancel the common factor of .
Step 2.5.1.1.2.1
Factor out of .
Step 2.5.1.1.2.2
Cancel the common factor.
Step 2.5.1.1.2.3
Rewrite the expression.
Step 2.5.1.1.3
Multiply.
Step 2.5.1.1.3.1
Multiply by .
Step 2.5.1.1.3.2
Multiply by .
Step 2.5.2
Simplify the right side.
Step 2.5.2.1
Simplify .
Step 2.5.2.1.1
Simplify terms.
Step 2.5.2.1.1.1
Apply the distributive property.
Step 2.5.2.1.1.2
Combine and .
Step 2.5.2.1.1.3
Cancel the common factor of .
Step 2.5.2.1.1.3.1
Move the leading negative in into the numerator.
Step 2.5.2.1.1.3.2
Factor out of .
Step 2.5.2.1.1.3.3
Factor out of .
Step 2.5.2.1.1.3.4
Cancel the common factor.
Step 2.5.2.1.1.3.5
Rewrite the expression.
Step 2.5.2.1.1.4
Combine and .
Step 2.5.2.1.1.5
Multiply by .
Step 2.5.2.1.2
Move to the left of .
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify each term.
Step 4.2.3.1
Simplify the numerator.
Step 4.2.3.1.1
Combine and .
Step 4.2.3.1.2
Move to the left of .
Step 4.2.3.1.3
Factor out of .
Step 4.2.3.1.3.1
Factor out of .
Step 4.2.3.1.3.2
Factor out of .
Step 4.2.3.1.3.3
Factor out of .
Step 4.2.3.1.4
Multiply by .
Step 4.2.3.1.5
Write as a fraction with a common denominator.
Step 4.2.3.1.6
Combine the numerators over the common denominator.
Step 4.2.3.2
Combine and .
Step 4.2.3.3
Reduce the expression by cancelling the common factors.
Step 4.2.3.3.1
Reduce the expression by cancelling the common factors.
Step 4.2.3.3.1.1
Factor out of .
Step 4.2.3.3.1.2
Factor out of .
Step 4.2.3.3.1.3
Cancel the common factor.
Step 4.2.3.3.1.4
Rewrite the expression.
Step 4.2.3.3.2
Divide by .
Step 4.2.3.4
Cancel the common factors.
Step 4.2.3.4.1
Factor out of .
Step 4.2.3.4.2
Cancel the common factor.
Step 4.2.3.4.3
Rewrite the expression.
Step 4.2.4
Combine the numerators over the common denominator.
Step 4.2.5
Simplify each term.
Step 4.2.5.1
Apply the distributive property.
Step 4.2.5.2
Multiply by .
Step 4.2.5.3
Multiply by .
Step 4.2.6
Simplify terms.
Step 4.2.6.1
Combine the opposite terms in .
Step 4.2.6.1.1
Add and .
Step 4.2.6.1.2
Add and .
Step 4.2.6.2
Cancel the common factor of .
Step 4.2.6.2.1
Cancel the common factor.
Step 4.2.6.2.2
Divide by .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify each term.
Step 4.3.3.1
Apply the distributive property.
Step 4.3.3.2
Cancel the common factor of .
Step 4.3.3.2.1
Move the leading negative in into the numerator.
Step 4.3.3.2.2
Move the leading negative in into the numerator.
Step 4.3.3.2.3
Factor out of .
Step 4.3.3.2.4
Cancel the common factor.
Step 4.3.3.2.5
Rewrite the expression.
Step 4.3.3.3
Cancel the common factor of .
Step 4.3.3.3.1
Factor out of .
Step 4.3.3.3.2
Cancel the common factor.
Step 4.3.3.3.3
Rewrite the expression.
Step 4.3.3.4
Multiply by .
Step 4.3.3.5
Multiply by .
Step 4.3.3.6
Cancel the common factor of .
Step 4.3.3.6.1
Move the leading negative in into the numerator.
Step 4.3.3.6.2
Factor out of .
Step 4.3.3.6.3
Cancel the common factor.
Step 4.3.3.6.4
Rewrite the expression.
Step 4.3.3.7
Cancel the common factor of .
Step 4.3.3.7.1
Cancel the common factor.
Step 4.3.3.7.2
Rewrite the expression.
Step 4.3.4
Combine the opposite terms in .
Step 4.3.4.1
Add and .
Step 4.3.4.2
Add and .
Step 4.4
Since and , then is the inverse of .