Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Add to both sides of the equation.
Step 2
Step 2.1
Divide each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of .
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Divide by .
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Dividing two negative values results in a positive value.
Step 2.3.1.2
Move the negative in front of the fraction.
Step 3
Interchange the variables.
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Add to both sides of the equation.
Step 4.3
Multiply both sides of the equation by .
Step 4.4
Simplify both sides of the equation.
Step 4.4.1
Simplify the left side.
Step 4.4.1.1
Simplify .
Step 4.4.1.1.1
Cancel the common factor of .
Step 4.4.1.1.1.1
Cancel the common factor.
Step 4.4.1.1.1.2
Rewrite the expression.
Step 4.4.1.1.2
Cancel the common factor of .
Step 4.4.1.1.2.1
Factor out of .
Step 4.4.1.1.2.2
Cancel the common factor.
Step 4.4.1.1.2.3
Rewrite the expression.
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify .
Step 4.4.2.1.1
Apply the distributive property.
Step 4.4.2.1.2
Combine and .
Step 4.4.2.1.3
Cancel the common factor of .
Step 4.4.2.1.3.1
Cancel the common factor.
Step 4.4.2.1.3.2
Rewrite the expression.
Step 4.4.2.1.4
Cancel the common factor of .
Step 4.4.2.1.4.1
Factor out of .
Step 4.4.2.1.4.2
Cancel the common factor.
Step 4.4.2.1.4.3
Rewrite the expression.
Step 5
Replace with to show the final answer.
Step 6
Step 6.1
To verify the inverse, check if and .
Step 6.2
Evaluate .
Step 6.2.1
Set up the composite result function.
Step 6.2.2
Evaluate by substituting in the value of into .
Step 6.2.3
Simplify each term.
Step 6.2.3.1
Simplify the numerator.
Step 6.2.3.1.1
Combine the numerators over the common denominator.
Step 6.2.3.1.2
Factor out of .
Step 6.2.3.1.2.1
Factor out of .
Step 6.2.3.1.2.2
Factor out of .
Step 6.2.3.1.2.3
Factor out of .
Step 6.2.3.2
Combine and .
Step 6.2.3.3
Multiply by .
Step 6.2.3.4
Reduce the expression by cancelling the common factors.
Step 6.2.3.4.1
Reduce the expression by cancelling the common factors.
Step 6.2.3.4.1.1
Factor out of .
Step 6.2.3.4.1.2
Factor out of .
Step 6.2.3.4.1.3
Cancel the common factor.
Step 6.2.3.4.1.4
Rewrite the expression.
Step 6.2.3.4.2
Divide by .
Step 6.2.3.5
Cancel the common factors.
Step 6.2.3.5.1
Factor out of .
Step 6.2.3.5.2
Cancel the common factor.
Step 6.2.3.5.3
Rewrite the expression.
Step 6.2.4
Simplify terms.
Step 6.2.4.1
Combine the numerators over the common denominator.
Step 6.2.4.2
Combine the opposite terms in .
Step 6.2.4.2.1
Add and .
Step 6.2.4.2.2
Add and .
Step 6.2.4.3
Cancel the common factor of .
Step 6.2.4.3.1
Cancel the common factor.
Step 6.2.4.3.2
Divide by .
Step 6.3
Evaluate .
Step 6.3.1
Set up the composite result function.
Step 6.3.2
Evaluate by substituting in the value of into .
Step 6.3.3
Combine the numerators over the common denominator.
Step 6.3.4
Simplify each term.
Step 6.3.4.1
Apply the distributive property.
Step 6.3.4.2
Cancel the common factor of .
Step 6.3.4.2.1
Cancel the common factor.
Step 6.3.4.2.2
Rewrite the expression.
Step 6.3.4.3
Cancel the common factor of .
Step 6.3.4.3.1
Factor out of .
Step 6.3.4.3.2
Cancel the common factor.
Step 6.3.4.3.3
Rewrite the expression.
Step 6.3.5
Simplify terms.
Step 6.3.5.1
Combine the opposite terms in .
Step 6.3.5.1.1
Subtract from .
Step 6.3.5.1.2
Add and .
Step 6.3.5.2
Cancel the common factor of .
Step 6.3.5.2.1
Cancel the common factor.
Step 6.3.5.2.2
Divide by .
Step 6.4
Since and , then is the inverse of .