Finite Math Examples

Find the Inverse 6x-7y-3=0
6x-7y-3=06x7y3=0
Step 1
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 1.1
Subtract 6x from both sides of the equation.
-7y-3=-6x
Step 1.2
Add 3 to both sides of the equation.
-7y=-6x+3
-7y=-6x+3
Step 2
Divide each term in -7y=-6x+3 by -7 and simplify.
Tap for more steps...
Step 2.1
Divide each term in -7y=-6x+3 by -7.
-7y-7=-6x-7+3-7
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of -7.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
-7y-7=-6x-7+3-7
Step 2.2.1.2
Divide y by 1.
y=-6x-7+3-7
y=-6x-7+3-7
y=-6x-7+3-7
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Simplify each term.
Tap for more steps...
Step 2.3.1.1
Dividing two negative values results in a positive value.
y=6x7+3-7
Step 2.3.1.2
Move the negative in front of the fraction.
y=6x7-37
y=6x7-37
y=6x7-37
y=6x7-37
Step 3
Interchange the variables.
x=6y7-37
Step 4
Solve for y.
Tap for more steps...
Step 4.1
Rewrite the equation as 6y7-37=x.
6y7-37=x
Step 4.2
Add 37 to both sides of the equation.
6y7=x+37
Step 4.3
Multiply both sides of the equation by 76.
766y7=76(x+37)
Step 4.4
Simplify both sides of the equation.
Tap for more steps...
Step 4.4.1
Simplify the left side.
Tap for more steps...
Step 4.4.1.1
Simplify 766y7.
Tap for more steps...
Step 4.4.1.1.1
Cancel the common factor of 7.
Tap for more steps...
Step 4.4.1.1.1.1
Cancel the common factor.
766y7=76(x+37)
Step 4.4.1.1.1.2
Rewrite the expression.
16(6y)=76(x+37)
16(6y)=76(x+37)
Step 4.4.1.1.2
Cancel the common factor of 6.
Tap for more steps...
Step 4.4.1.1.2.1
Factor 6 out of 6y.
16(6(y))=76(x+37)
Step 4.4.1.1.2.2
Cancel the common factor.
16(6y)=76(x+37)
Step 4.4.1.1.2.3
Rewrite the expression.
y=76(x+37)
y=76(x+37)
y=76(x+37)
y=76(x+37)
Step 4.4.2
Simplify the right side.
Tap for more steps...
Step 4.4.2.1
Simplify 76(x+37).
Tap for more steps...
Step 4.4.2.1.1
Apply the distributive property.
y=76x+7637
Step 4.4.2.1.2
Combine 76 and x.
y=7x6+7637
Step 4.4.2.1.3
Cancel the common factor of 7.
Tap for more steps...
Step 4.4.2.1.3.1
Cancel the common factor.
y=7x6+7637
Step 4.4.2.1.3.2
Rewrite the expression.
y=7x6+163
y=7x6+163
Step 4.4.2.1.4
Cancel the common factor of 3.
Tap for more steps...
Step 4.4.2.1.4.1
Factor 3 out of 6.
y=7x6+13(2)3
Step 4.4.2.1.4.2
Cancel the common factor.
y=7x6+1323
Step 4.4.2.1.4.3
Rewrite the expression.
y=7x6+12
y=7x6+12
y=7x6+12
y=7x6+12
y=7x6+12
y=7x6+12
Step 5
Replace y with f-1(x) to show the final answer.
f-1(x)=7x6+12
Step 6
Verify if f-1(x)=7x6+12 is the inverse of f(x)=6x7-37.
Tap for more steps...
Step 6.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 6.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 6.2.1
Set up the composite result function.
f-1(f(x))
Step 6.2.2
Evaluate f-1(6x7-37) by substituting in the value of f into f-1.
f-1(6x7-37)=7(6x7-37)6+12
Step 6.2.3
Simplify each term.
Tap for more steps...
Step 6.2.3.1
Simplify the numerator.
Tap for more steps...
Step 6.2.3.1.1
Combine the numerators over the common denominator.
f-1(6x7-37)=7(6x-37)6+12
Step 6.2.3.1.2
Factor 3 out of 6x-3.
Tap for more steps...
Step 6.2.3.1.2.1
Factor 3 out of 6x.
f-1(6x7-37)=7(3(2x)-37)6+12
Step 6.2.3.1.2.2
Factor 3 out of -3.
f-1(6x7-37)=7(3(2x)+3(-1)7)6+12
Step 6.2.3.1.2.3
Factor 3 out of 3(2x)+3(-1).
f-1(6x7-37)=7(3(2x-1)7)6+12
f-1(6x7-37)=7(3(2x-1)7)6+12
f-1(6x7-37)=7(3(2x-1)7)6+12
Step 6.2.3.2
Combine 7 and 3(2x-1)7.
f-1(6x7-37)=7(3(2x-1))76+12
Step 6.2.3.3
Multiply 7 by 3.
f-1(6x7-37)=21(2x-1)76+12
Step 6.2.3.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 6.2.3.4.1
Reduce the expression 21(2x-1)7 by cancelling the common factors.
Tap for more steps...
Step 6.2.3.4.1.1
Factor 7 out of 21(2x-1).
f-1(6x7-37)=7(3(2x-1))76+12
Step 6.2.3.4.1.2
Factor 7 out of 7.
f-1(6x7-37)=7(3(2x-1))7(1)6+12
Step 6.2.3.4.1.3
Cancel the common factor.
f-1(6x7-37)=7(3(2x-1))716+12
Step 6.2.3.4.1.4
Rewrite the expression.
f-1(6x7-37)=3(2x-1)16+12
f-1(6x7-37)=3(2x-1)16+12
Step 6.2.3.4.2
Divide 3(2x-1) by 1.
f-1(6x7-37)=3(2x-1)6+12
f-1(6x7-37)=3(2x-1)6+12
Step 6.2.3.5
Cancel the common factors.
Tap for more steps...
Step 6.2.3.5.1
Factor 3 out of 6.
f-1(6x7-37)=3(2x-1)32+12
Step 6.2.3.5.2
Cancel the common factor.
f-1(6x7-37)=3(2x-1)32+12
Step 6.2.3.5.3
Rewrite the expression.
f-1(6x7-37)=2x-12+12
f-1(6x7-37)=2x-12+12
f-1(6x7-37)=2x-12+12
Step 6.2.4
Simplify terms.
Tap for more steps...
Step 6.2.4.1
Combine the numerators over the common denominator.
f-1(6x7-37)=2x-1+12
Step 6.2.4.2
Combine the opposite terms in 2x-1+1.
Tap for more steps...
Step 6.2.4.2.1
Add -1 and 1.
f-1(6x7-37)=2x+02
Step 6.2.4.2.2
Add 2x and 0.
f-1(6x7-37)=2x2
f-1(6x7-37)=2x2
Step 6.2.4.3
Cancel the common factor of 2.
Tap for more steps...
Step 6.2.4.3.1
Cancel the common factor.
f-1(6x7-37)=2x2
Step 6.2.4.3.2
Divide x by 1.
f-1(6x7-37)=x
f-1(6x7-37)=x
f-1(6x7-37)=x
f-1(6x7-37)=x
Step 6.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 6.3.1
Set up the composite result function.
f(f-1(x))
Step 6.3.2
Evaluate f(7x6+12) by substituting in the value of f-1 into f.
f(7x6+12)=6(7x6+12)7-37
Step 6.3.3
Combine the numerators over the common denominator.
f(7x6+12)=6(7x6+12)-37
Step 6.3.4
Simplify each term.
Tap for more steps...
Step 6.3.4.1
Apply the distributive property.
f(7x6+12)=6(7x6)+6(12)-37
Step 6.3.4.2
Cancel the common factor of 6.
Tap for more steps...
Step 6.3.4.2.1
Cancel the common factor.
f(7x6+12)=6(7x6)+6(12)-37
Step 6.3.4.2.2
Rewrite the expression.
f(7x6+12)=7x+6(12)-37
f(7x6+12)=7x+6(12)-37
Step 6.3.4.3
Cancel the common factor of 2.
Tap for more steps...
Step 6.3.4.3.1
Factor 2 out of 6.
f(7x6+12)=7x+2(3)(12)-37
Step 6.3.4.3.2
Cancel the common factor.
f(7x6+12)=7x+2(3(12))-37
Step 6.3.4.3.3
Rewrite the expression.
f(7x6+12)=7x+3-37
f(7x6+12)=7x+3-37
f(7x6+12)=7x+3-37
Step 6.3.5
Simplify terms.
Tap for more steps...
Step 6.3.5.1
Combine the opposite terms in 7x+3-3.
Tap for more steps...
Step 6.3.5.1.1
Subtract 3 from 3.
f(7x6+12)=7x+07
Step 6.3.5.1.2
Add 7x and 0.
f(7x6+12)=7x7
f(7x6+12)=7x7
Step 6.3.5.2
Cancel the common factor of 7.
Tap for more steps...
Step 6.3.5.2.1
Cancel the common factor.
f(7x6+12)=7x7
Step 6.3.5.2.2
Divide x by 1.
f(7x6+12)=x
f(7x6+12)=x
f(7x6+12)=x
f(7x6+12)=x
Step 6.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=7x6+12 is the inverse of f(x)=6x7-37.
f-1(x)=7x6+12
f-1(x)=7x6+12
 [x2  12  π  xdx ]