Enter a problem...
Finite Math Examples
6x-7y-3=06x−7y−3=0
Step 1
Step 1.1
Subtract 6x from both sides of the equation.
-7y-3=-6x
Step 1.2
Add 3 to both sides of the equation.
-7y=-6x+3
-7y=-6x+3
Step 2
Step 2.1
Divide each term in -7y=-6x+3 by -7.
-7y-7=-6x-7+3-7
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of -7.
Step 2.2.1.1
Cancel the common factor.
-7y-7=-6x-7+3-7
Step 2.2.1.2
Divide y by 1.
y=-6x-7+3-7
y=-6x-7+3-7
y=-6x-7+3-7
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Dividing two negative values results in a positive value.
y=6x7+3-7
Step 2.3.1.2
Move the negative in front of the fraction.
y=6x7-37
y=6x7-37
y=6x7-37
y=6x7-37
Step 3
Interchange the variables.
x=6y7-37
Step 4
Step 4.1
Rewrite the equation as 6y7-37=x.
6y7-37=x
Step 4.2
Add 37 to both sides of the equation.
6y7=x+37
Step 4.3
Multiply both sides of the equation by 76.
76⋅6y7=76(x+37)
Step 4.4
Simplify both sides of the equation.
Step 4.4.1
Simplify the left side.
Step 4.4.1.1
Simplify 76⋅6y7.
Step 4.4.1.1.1
Cancel the common factor of 7.
Step 4.4.1.1.1.1
Cancel the common factor.
76⋅6y7=76(x+37)
Step 4.4.1.1.1.2
Rewrite the expression.
16(6y)=76(x+37)
16(6y)=76(x+37)
Step 4.4.1.1.2
Cancel the common factor of 6.
Step 4.4.1.1.2.1
Factor 6 out of 6y.
16(6(y))=76(x+37)
Step 4.4.1.1.2.2
Cancel the common factor.
16(6y)=76(x+37)
Step 4.4.1.1.2.3
Rewrite the expression.
y=76(x+37)
y=76(x+37)
y=76(x+37)
y=76(x+37)
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify 76(x+37).
Step 4.4.2.1.1
Apply the distributive property.
y=76x+76⋅37
Step 4.4.2.1.2
Combine 76 and x.
y=7x6+76⋅37
Step 4.4.2.1.3
Cancel the common factor of 7.
Step 4.4.2.1.3.1
Cancel the common factor.
y=7x6+76⋅37
Step 4.4.2.1.3.2
Rewrite the expression.
y=7x6+16⋅3
y=7x6+16⋅3
Step 4.4.2.1.4
Cancel the common factor of 3.
Step 4.4.2.1.4.1
Factor 3 out of 6.
y=7x6+13(2)⋅3
Step 4.4.2.1.4.2
Cancel the common factor.
y=7x6+13⋅2⋅3
Step 4.4.2.1.4.3
Rewrite the expression.
y=7x6+12
y=7x6+12
y=7x6+12
y=7x6+12
y=7x6+12
y=7x6+12
Step 5
Replace y with f-1(x) to show the final answer.
f-1(x)=7x6+12
Step 6
Step 6.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 6.2
Evaluate f-1(f(x)).
Step 6.2.1
Set up the composite result function.
f-1(f(x))
Step 6.2.2
Evaluate f-1(6x7-37) by substituting in the value of f into f-1.
f-1(6x7-37)=7(6x7-37)6+12
Step 6.2.3
Simplify each term.
Step 6.2.3.1
Simplify the numerator.
Step 6.2.3.1.1
Combine the numerators over the common denominator.
f-1(6x7-37)=7(6x-37)6+12
Step 6.2.3.1.2
Factor 3 out of 6x-3.
Step 6.2.3.1.2.1
Factor 3 out of 6x.
f-1(6x7-37)=7(3(2x)-37)6+12
Step 6.2.3.1.2.2
Factor 3 out of -3.
f-1(6x7-37)=7(3(2x)+3(-1)7)6+12
Step 6.2.3.1.2.3
Factor 3 out of 3(2x)+3(-1).
f-1(6x7-37)=7(3(2x-1)7)6+12
f-1(6x7-37)=7(3(2x-1)7)6+12
f-1(6x7-37)=7(3(2x-1)7)6+12
Step 6.2.3.2
Combine 7 and 3(2x-1)7.
f-1(6x7-37)=7(3(2x-1))76+12
Step 6.2.3.3
Multiply 7 by 3.
f-1(6x7-37)=21(2x-1)76+12
Step 6.2.3.4
Reduce the expression by cancelling the common factors.
Step 6.2.3.4.1
Reduce the expression 21(2x-1)7 by cancelling the common factors.
Step 6.2.3.4.1.1
Factor 7 out of 21(2x-1).
f-1(6x7-37)=7(3(2x-1))76+12
Step 6.2.3.4.1.2
Factor 7 out of 7.
f-1(6x7-37)=7(3(2x-1))7(1)6+12
Step 6.2.3.4.1.3
Cancel the common factor.
f-1(6x7-37)=7(3(2x-1))7⋅16+12
Step 6.2.3.4.1.4
Rewrite the expression.
f-1(6x7-37)=3(2x-1)16+12
f-1(6x7-37)=3(2x-1)16+12
Step 6.2.3.4.2
Divide 3(2x-1) by 1.
f-1(6x7-37)=3(2x-1)6+12
f-1(6x7-37)=3(2x-1)6+12
Step 6.2.3.5
Cancel the common factors.
Step 6.2.3.5.1
Factor 3 out of 6.
f-1(6x7-37)=3(2x-1)3⋅2+12
Step 6.2.3.5.2
Cancel the common factor.
f-1(6x7-37)=3(2x-1)3⋅2+12
Step 6.2.3.5.3
Rewrite the expression.
f-1(6x7-37)=2x-12+12
f-1(6x7-37)=2x-12+12
f-1(6x7-37)=2x-12+12
Step 6.2.4
Simplify terms.
Step 6.2.4.1
Combine the numerators over the common denominator.
f-1(6x7-37)=2x-1+12
Step 6.2.4.2
Combine the opposite terms in 2x-1+1.
Step 6.2.4.2.1
Add -1 and 1.
f-1(6x7-37)=2x+02
Step 6.2.4.2.2
Add 2x and 0.
f-1(6x7-37)=2x2
f-1(6x7-37)=2x2
Step 6.2.4.3
Cancel the common factor of 2.
Step 6.2.4.3.1
Cancel the common factor.
f-1(6x7-37)=2x2
Step 6.2.4.3.2
Divide x by 1.
f-1(6x7-37)=x
f-1(6x7-37)=x
f-1(6x7-37)=x
f-1(6x7-37)=x
Step 6.3
Evaluate f(f-1(x)).
Step 6.3.1
Set up the composite result function.
f(f-1(x))
Step 6.3.2
Evaluate f(7x6+12) by substituting in the value of f-1 into f.
f(7x6+12)=6(7x6+12)7-37
Step 6.3.3
Combine the numerators over the common denominator.
f(7x6+12)=6(7x6+12)-37
Step 6.3.4
Simplify each term.
Step 6.3.4.1
Apply the distributive property.
f(7x6+12)=6(7x6)+6(12)-37
Step 6.3.4.2
Cancel the common factor of 6.
Step 6.3.4.2.1
Cancel the common factor.
f(7x6+12)=6(7x6)+6(12)-37
Step 6.3.4.2.2
Rewrite the expression.
f(7x6+12)=7x+6(12)-37
f(7x6+12)=7x+6(12)-37
Step 6.3.4.3
Cancel the common factor of 2.
Step 6.3.4.3.1
Factor 2 out of 6.
f(7x6+12)=7x+2(3)(12)-37
Step 6.3.4.3.2
Cancel the common factor.
f(7x6+12)=7x+2⋅(3(12))-37
Step 6.3.4.3.3
Rewrite the expression.
f(7x6+12)=7x+3-37
f(7x6+12)=7x+3-37
f(7x6+12)=7x+3-37
Step 6.3.5
Simplify terms.
Step 6.3.5.1
Combine the opposite terms in 7x+3-3.
Step 6.3.5.1.1
Subtract 3 from 3.
f(7x6+12)=7x+07
Step 6.3.5.1.2
Add 7x and 0.
f(7x6+12)=7x7
f(7x6+12)=7x7
Step 6.3.5.2
Cancel the common factor of 7.
Step 6.3.5.2.1
Cancel the common factor.
f(7x6+12)=7x7
Step 6.3.5.2.2
Divide x by 1.
f(7x6+12)=x
f(7x6+12)=x
f(7x6+12)=x
f(7x6+12)=x
Step 6.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=7x6+12 is the inverse of f(x)=6x7-37.
f-1(x)=7x6+12
f-1(x)=7x6+12