Enter a problem...
Finite Math Examples
4x+7y4x+7y
Step 1
Subtract 4x4x from both sides of the equation.
7y=-4x7y=−4x
Step 2
Step 2.1
Divide each term in 7y=-4x7y=−4x by 77.
7y7=-4x77y7=−4x7
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 77.
Step 2.2.1.1
Cancel the common factor.
7y7=-4x77y7=−4x7
Step 2.2.1.2
Divide yy by 11.
y=-4x7y=−4x7
y=-4x7y=−4x7
y=-4x7y=−4x7
Step 2.3
Simplify the right side.
Step 2.3.1
Move the negative in front of the fraction.
y=-4x7y=−4x7
y=-4x7y=−4x7
y=-4x7y=−4x7
Step 3
Interchange the variables.
x=-4y7x=−4y7
Step 4
Step 4.1
Rewrite the equation as -4y7=x−4y7=x.
-4y7=x−4y7=x
Step 4.2
Multiply both sides of the equation by -74−74.
-74(-4y7)=-74x−74(−4y7)=−74x
Step 4.3
Simplify both sides of the equation.
Step 4.3.1
Simplify the left side.
Step 4.3.1.1
Simplify -74(-4y7)−74(−4y7).
Step 4.3.1.1.1
Cancel the common factor of 77.
Step 4.3.1.1.1.1
Move the leading negative in -74−74 into the numerator.
-74(-4y7)=-74x−74(−4y7)=−74x
Step 4.3.1.1.1.2
Move the leading negative in -4y7−4y7 into the numerator.
-74⋅-4y7=-74x−74⋅−4y7=−74x
Step 4.3.1.1.1.3
Factor 77 out of -7−7.
7(-1)4⋅-4y7=-74x7(−1)4⋅−4y7=−74x
Step 4.3.1.1.1.4
Cancel the common factor.
7⋅-14⋅-4y7=-74x7⋅−14⋅−4y7=−74x
Step 4.3.1.1.1.5
Rewrite the expression.
-14(-4y)=-74x−14(−4y)=−74x
-14(-4y)=-74x−14(−4y)=−74x
Step 4.3.1.1.2
Cancel the common factor of 44.
Step 4.3.1.1.2.1
Factor 44 out of -4y−4y.
-14(4(-y))=-74x−14(4(−y))=−74x
Step 4.3.1.1.2.2
Cancel the common factor.
-14(4(-y))=-74x−14(4(−y))=−74x
Step 4.3.1.1.2.3
Rewrite the expression.
--y=-74x−−y=−74x
--y=-74x−−y=−74x
Step 4.3.1.1.3
Multiply.
Step 4.3.1.1.3.1
Multiply -1−1 by -1−1.
1y=-74x1y=−74x
Step 4.3.1.1.3.2
Multiply yy by 11.
y=-74xy=−74x
y=-74xy=−74x
y=-74xy=−74x
y=-74xy=−74x
Step 4.3.2
Simplify the right side.
Step 4.3.2.1
Simplify -74x−74x.
Step 4.3.2.1.1
Combine xx and 7474.
y=-x⋅74y=−x⋅74
Step 4.3.2.1.2
Move 77 to the left of xx.
y=-7x4y=−7x4
y=-7x4y=−7x4
y=-7x4y=−7x4
y=-7x4y=−7x4
y=-7x4y=−7x4
Step 5
Replace yy with f-1(x)f−1(x) to show the final answer.
f-1(x)=-7x4f−1(x)=−7x4
Step 6
Step 6.1
To verify the inverse, check if f-1(f(x))=xf−1(f(x))=x and f(f-1(x))=xf(f−1(x))=x.
Step 6.2
Evaluate f-1(f(x))f−1(f(x)).
Step 6.2.1
Set up the composite result function.
f-1(f(x))f−1(f(x))
Step 6.2.2
Evaluate f-1(-4x7)f−1(−4x7) by substituting in the value of ff into f-1f−1.
f-1(-4x7)=-7(-4x7)4f−1(−4x7)=−7(−4x7)4
Step 6.2.3
Simplify the numerator.
Step 6.2.3.1
Multiply -1−1 by 77.
f-1(-4x7)=--74x74f−1(−4x7)=−−74x74
Step 6.2.3.2
Combine -7−7 and 4x74x7.
f-1(-4x7)=--7(4x)74f−1(−4x7)=−−7(4x)74
f-1(-4x7)=--7(4x)74f−1(−4x7)=−−7(4x)74
Step 6.2.4
Multiply -7−7 by 44.
f-1(-4x7)=--28x74f−1(−4x7)=−−28x74
Step 6.2.5
Reduce the expression by cancelling the common factors.
Step 6.2.5.1
Reduce the expression -28x7−28x7 by cancelling the common factors.
Step 6.2.5.1.1
Factor 77 out of -28x−28x.
f-1(-4x7)=-7(-4x)74f−1(−4x7)=−7(−4x)74
Step 6.2.5.1.2
Factor 77 out of 77.
f-1(-4x7)=-7(-4x)7(1)4f−1(−4x7)=−7(−4x)7(1)4
Step 6.2.5.1.3
Cancel the common factor.
f-1(-4x7)=-7(-4x)7⋅14f−1(−4x7)=−7(−4x)7⋅14
Step 6.2.5.1.4
Rewrite the expression.
f-1(-4x7)=--4x14f−1(−4x7)=−−4x14
f-1(-4x7)=--4x14f−1(−4x7)=−−4x14
Step 6.2.5.2
Divide -4x−4x by 11.
f-1(-4x7)=--4x4f−1(−4x7)=−−4x4
f-1(-4x7)=--4x4f−1(−4x7)=−−4x4
Step 6.2.6
Cancel the common factor of -4−4 and 44.
Step 6.2.6.1
Factor 44 out of -4x−4x.
f-1(-4x7)=-4(-x)4f−1(−4x7)=−4(−x)4
Step 6.2.6.2
Cancel the common factors.
Step 6.2.6.2.1
Factor 44 out of 44.
f-1(-4x7)=-4(-x)4(1)f−1(−4x7)=−4(−x)4(1)
Step 6.2.6.2.2
Cancel the common factor.
f-1(-4x7)=-4(-x)4⋅1f−1(−4x7)=−4(−x)4⋅1
Step 6.2.6.2.3
Rewrite the expression.
f-1(-4x7)=--x1f−1(−4x7)=−−x1
Step 6.2.6.2.4
Divide -x−x by 11.
f-1(-4x7)=xf−1(−4x7)=x
f-1(-4x7)=xf−1(−4x7)=x
f-1(-4x7)=xf−1(−4x7)=x
f-1(-4x7)=xf−1(−4x7)=x
Step 6.3
Evaluate f(f-1(x))f(f−1(x)).
Step 6.3.1
Set up the composite result function.
f(f-1(x))f(f−1(x))
Step 6.3.2
Evaluate f(-7x4)f(−7x4) by substituting in the value of f-1f−1 into ff.
f(-7x4)=-4(-7x4)7f(−7x4)=−4(−7x4)7
Step 6.3.3
Simplify the numerator.
Step 6.3.3.1
Multiply -1−1 by 44.
f(-7x4)=--47x47f(−7x4)=−−47x47
Step 6.3.3.2
Combine -4−4 and 7x47x4.
f(-7x4)=--4(7x)47f(−7x4)=−−4(7x)47
f(-7x4)=--4(7x)47f(−7x4)=−−4(7x)47
Step 6.3.4
Multiply -4−4 by 77.
f(-7x4)=--28x47f(−7x4)=−−28x47
Step 6.3.5
Reduce the expression by cancelling the common factors.
Step 6.3.5.1
Reduce the expression -28x4−28x4 by cancelling the common factors.
Step 6.3.5.1.1
Factor 44 out of -28x−28x.
f(-7x4)=-4(-7x)47f(−7x4)=−4(−7x)47
Step 6.3.5.1.2
Factor 44 out of 44.
f(-7x4)=-4(-7x)4(1)7f(−7x4)=−4(−7x)4(1)7
Step 6.3.5.1.3
Cancel the common factor.
f(-7x4)=-4(-7x)4⋅17f(−7x4)=−4(−7x)4⋅17
Step 6.3.5.1.4
Rewrite the expression.
f(-7x4)=--7x17f(−7x4)=−−7x17
f(-7x4)=--7x17
Step 6.3.5.2
Divide -7x by 1.
f(-7x4)=--7x7
f(-7x4)=--7x7
Step 6.3.6
Cancel the common factor of -7 and 7.
Step 6.3.6.1
Factor 7 out of -7x.
f(-7x4)=-7(-x)7
Step 6.3.6.2
Cancel the common factors.
Step 6.3.6.2.1
Factor 7 out of 7.
f(-7x4)=-7(-x)7(1)
Step 6.3.6.2.2
Cancel the common factor.
f(-7x4)=-7(-x)7⋅1
Step 6.3.6.2.3
Rewrite the expression.
f(-7x4)=--x1
Step 6.3.6.2.4
Divide -x by 1.
f(-7x4)=x
f(-7x4)=x
f(-7x4)=x
f(-7x4)=x
Step 6.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=-7x4 is the inverse of f(x)=-4x7.
f-1(x)=-7x4
f-1(x)=-7x4