Finite Math Examples

Find the Inverse 2x^2-12x+3
2x2-12x+32x212x+3
Step 1
Interchange the variables.
x=2y2-12y+3
Step 2
Solve for y.
Tap for more steps...
Step 2.1
Rewrite the equation as 2y2-12y+3=x.
2y2-12y+3=x
Step 2.2
Subtract x from both sides of the equation.
2y2-12y+3-x=0
Step 2.3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 2.4
Substitute the values a=2, b=-12, and c=3-x into the quadratic formula and solve for y.
12±(-12)2-4(2(3-x))22
Step 2.5
Simplify.
Tap for more steps...
Step 2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.5.1.1
Raise -12 to the power of 2.
y=12±144-42(3-x)22
Step 2.5.1.2
Multiply -4 by 2.
y=12±144-8(3-x)22
Step 2.5.1.3
Apply the distributive property.
y=12±144-83-8(-x)22
Step 2.5.1.4
Multiply -8 by 3.
y=12±144-24-8(-x)22
Step 2.5.1.5
Multiply -1 by -8.
y=12±144-24+8x22
Step 2.5.1.6
Subtract 24 from 144.
y=12±120+8x22
Step 2.5.1.7
Factor 8 out of 120+8x.
Tap for more steps...
Step 2.5.1.7.1
Factor 8 out of 120.
y=12±815+8x22
Step 2.5.1.7.2
Factor 8 out of 815+8x.
y=12±8(15+x)22
y=12±8(15+x)22
Step 2.5.1.8
Rewrite 8(15+x) as 22(2(15+x)).
Tap for more steps...
Step 2.5.1.8.1
Factor 4 out of 8.
y=12±4(2)(15+x)22
Step 2.5.1.8.2
Rewrite 4 as 22.
y=12±22(2(15+x))22
Step 2.5.1.8.3
Add parentheses.
y=12±22(2(15+x))22
y=12±22(2(15+x))22
Step 2.5.1.9
Pull terms out from under the radical.
y=12±22(15+x)22
y=12±22(15+x)22
Step 2.5.2
Multiply 2 by 2.
y=12±22(15+x)4
Step 2.5.3
Simplify 12±22(15+x)4.
y=6±2(15+x)2
y=6±2(15+x)2
Step 2.6
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 2.6.1
Simplify the numerator.
Tap for more steps...
Step 2.6.1.1
Raise -12 to the power of 2.
y=12±144-42(3-x)22
Step 2.6.1.2
Multiply -4 by 2.
y=12±144-8(3-x)22
Step 2.6.1.3
Apply the distributive property.
y=12±144-83-8(-x)22
Step 2.6.1.4
Multiply -8 by 3.
y=12±144-24-8(-x)22
Step 2.6.1.5
Multiply -1 by -8.
y=12±144-24+8x22
Step 2.6.1.6
Subtract 24 from 144.
y=12±120+8x22
Step 2.6.1.7
Factor 8 out of 120+8x.
Tap for more steps...
Step 2.6.1.7.1
Factor 8 out of 120.
y=12±815+8x22
Step 2.6.1.7.2
Factor 8 out of 815+8x.
y=12±8(15+x)22
y=12±8(15+x)22
Step 2.6.1.8
Rewrite 8(15+x) as 22(2(15+x)).
Tap for more steps...
Step 2.6.1.8.1
Factor 4 out of 8.
y=12±4(2)(15+x)22
Step 2.6.1.8.2
Rewrite 4 as 22.
y=12±22(2(15+x))22
Step 2.6.1.8.3
Add parentheses.
y=12±22(2(15+x))22
y=12±22(2(15+x))22
Step 2.6.1.9
Pull terms out from under the radical.
y=12±22(15+x)22
y=12±22(15+x)22
Step 2.6.2
Multiply 2 by 2.
y=12±22(15+x)4
Step 2.6.3
Simplify 12±22(15+x)4.
y=6±2(15+x)2
Step 2.6.4
Change the ± to +.
y=6+2(15+x)2
y=6+2(15+x)2
Step 2.7
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 2.7.1
Simplify the numerator.
Tap for more steps...
Step 2.7.1.1
Raise -12 to the power of 2.
y=12±144-42(3-x)22
Step 2.7.1.2
Multiply -4 by 2.
y=12±144-8(3-x)22
Step 2.7.1.3
Apply the distributive property.
y=12±144-83-8(-x)22
Step 2.7.1.4
Multiply -8 by 3.
y=12±144-24-8(-x)22
Step 2.7.1.5
Multiply -1 by -8.
y=12±144-24+8x22
Step 2.7.1.6
Subtract 24 from 144.
y=12±120+8x22
Step 2.7.1.7
Factor 8 out of 120+8x.
Tap for more steps...
Step 2.7.1.7.1
Factor 8 out of 120.
y=12±815+8x22
Step 2.7.1.7.2
Factor 8 out of 815+8x.
y=12±8(15+x)22
y=12±8(15+x)22
Step 2.7.1.8
Rewrite 8(15+x) as 22(2(15+x)).
Tap for more steps...
Step 2.7.1.8.1
Factor 4 out of 8.
y=12±4(2)(15+x)22
Step 2.7.1.8.2
Rewrite 4 as 22.
y=12±22(2(15+x))22
Step 2.7.1.8.3
Add parentheses.
y=12±22(2(15+x))22
y=12±22(2(15+x))22
Step 2.7.1.9
Pull terms out from under the radical.
y=12±22(15+x)22
y=12±22(15+x)22
Step 2.7.2
Multiply 2 by 2.
y=12±22(15+x)4
Step 2.7.3
Simplify 12±22(15+x)4.
y=6±2(15+x)2
Step 2.7.4
Change the ± to -.
y=6-2(15+x)2
y=6-2(15+x)2
Step 2.8
The final answer is the combination of both solutions.
y=6+2(15+x)2
y=6-2(15+x)2
y=6+2(15+x)2
y=6-2(15+x)2
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=6+2(15+x)2,6-2(15+x)2
Step 4
Verify if f-1(x)=6+2(15+x)2,6-2(15+x)2 is the inverse of f(x)=2x2-12x+3.
Tap for more steps...
Step 4.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of f(x)=2x2-12x+3 and f-1(x)=6+2(15+x)2,6-2(15+x)2 and compare them.
Step 4.2
Find the range of f(x)=2x2-12x+3.
Tap for more steps...
Step 4.2.1
The range is the set of all valid y values. Use the graph to find the range.
Interval Notation:
[-15,)
[-15,)
Step 4.3
Find the domain of 6+2(15+x)2.
Tap for more steps...
Step 4.3.1
Set the radicand in 2(15+x) greater than or equal to 0 to find where the expression is defined.
2(15+x)0
Step 4.3.2
Solve for x.
Tap for more steps...
Step 4.3.2.1
Divide each term in 2(15+x)0 by 2 and simplify.
Tap for more steps...
Step 4.3.2.1.1
Divide each term in 2(15+x)0 by 2.
2(15+x)202
Step 4.3.2.1.2
Simplify the left side.
Tap for more steps...
Step 4.3.2.1.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 4.3.2.1.2.1.1
Cancel the common factor.
2(15+x)202
Step 4.3.2.1.2.1.2
Divide 15+x by 1.
15+x02
15+x02
15+x02
Step 4.3.2.1.3
Simplify the right side.
Tap for more steps...
Step 4.3.2.1.3.1
Divide 0 by 2.
15+x0
15+x0
15+x0
Step 4.3.2.2
Subtract 15 from both sides of the inequality.
x-15
x-15
Step 4.3.3
The domain is all values of x that make the expression defined.
[-15,)
[-15,)
Step 4.4
Find the domain of f(x)=2x2-12x+3.
Tap for more steps...
Step 4.4.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
(-,)
(-,)
Step 4.5
Since the domain of f-1(x)=6+2(15+x)2,6-2(15+x)2 is the range of f(x)=2x2-12x+3 and the range of f-1(x)=6+2(15+x)2,6-2(15+x)2 is the domain of f(x)=2x2-12x+3, then f-1(x)=6+2(15+x)2,6-2(15+x)2 is the inverse of f(x)=2x2-12x+3.
f-1(x)=6+2(15+x)2,6-2(15+x)2
f-1(x)=6+2(15+x)2,6-2(15+x)2
Step 5
 [x2  12  π  xdx ]