Enter a problem...
Finite Math Examples
2x2-12x+32x2−12x+3
Step 1
Interchange the variables.
x=2y2-12y+3
Step 2
Step 2.1
Rewrite the equation as 2y2-12y+3=x.
2y2-12y+3=x
Step 2.2
Subtract x from both sides of the equation.
2y2-12y+3-x=0
Step 2.3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 2.4
Substitute the values a=2, b=-12, and c=3-x into the quadratic formula and solve for y.
12±√(-12)2-4⋅(2⋅(3-x))2⋅2
Step 2.5
Simplify.
Step 2.5.1
Simplify the numerator.
Step 2.5.1.1
Raise -12 to the power of 2.
y=12±√144-4⋅2⋅(3-x)2⋅2
Step 2.5.1.2
Multiply -4 by 2.
y=12±√144-8⋅(3-x)2⋅2
Step 2.5.1.3
Apply the distributive property.
y=12±√144-8⋅3-8(-x)2⋅2
Step 2.5.1.4
Multiply -8 by 3.
y=12±√144-24-8(-x)2⋅2
Step 2.5.1.5
Multiply -1 by -8.
y=12±√144-24+8x2⋅2
Step 2.5.1.6
Subtract 24 from 144.
y=12±√120+8x2⋅2
Step 2.5.1.7
Factor 8 out of 120+8x.
Step 2.5.1.7.1
Factor 8 out of 120.
y=12±√8⋅15+8x2⋅2
Step 2.5.1.7.2
Factor 8 out of 8⋅15+8x.
y=12±√8(15+x)2⋅2
y=12±√8(15+x)2⋅2
Step 2.5.1.8
Rewrite 8(15+x) as 22⋅(2(15+x)).
Step 2.5.1.8.1
Factor 4 out of 8.
y=12±√4(2)(15+x)2⋅2
Step 2.5.1.8.2
Rewrite 4 as 22.
y=12±√22⋅(2(15+x))2⋅2
Step 2.5.1.8.3
Add parentheses.
y=12±√22⋅(2(15+x))2⋅2
y=12±√22⋅(2(15+x))2⋅2
Step 2.5.1.9
Pull terms out from under the radical.
y=12±2√2(15+x)2⋅2
y=12±2√2(15+x)2⋅2
Step 2.5.2
Multiply 2 by 2.
y=12±2√2(15+x)4
Step 2.5.3
Simplify 12±2√2(15+x)4.
y=6±√2(15+x)2
y=6±√2(15+x)2
Step 2.6
Simplify the expression to solve for the + portion of the ±.
Step 2.6.1
Simplify the numerator.
Step 2.6.1.1
Raise -12 to the power of 2.
y=12±√144-4⋅2⋅(3-x)2⋅2
Step 2.6.1.2
Multiply -4 by 2.
y=12±√144-8⋅(3-x)2⋅2
Step 2.6.1.3
Apply the distributive property.
y=12±√144-8⋅3-8(-x)2⋅2
Step 2.6.1.4
Multiply -8 by 3.
y=12±√144-24-8(-x)2⋅2
Step 2.6.1.5
Multiply -1 by -8.
y=12±√144-24+8x2⋅2
Step 2.6.1.6
Subtract 24 from 144.
y=12±√120+8x2⋅2
Step 2.6.1.7
Factor 8 out of 120+8x.
Step 2.6.1.7.1
Factor 8 out of 120.
y=12±√8⋅15+8x2⋅2
Step 2.6.1.7.2
Factor 8 out of 8⋅15+8x.
y=12±√8(15+x)2⋅2
y=12±√8(15+x)2⋅2
Step 2.6.1.8
Rewrite 8(15+x) as 22⋅(2(15+x)).
Step 2.6.1.8.1
Factor 4 out of 8.
y=12±√4(2)(15+x)2⋅2
Step 2.6.1.8.2
Rewrite 4 as 22.
y=12±√22⋅(2(15+x))2⋅2
Step 2.6.1.8.3
Add parentheses.
y=12±√22⋅(2(15+x))2⋅2
y=12±√22⋅(2(15+x))2⋅2
Step 2.6.1.9
Pull terms out from under the radical.
y=12±2√2(15+x)2⋅2
y=12±2√2(15+x)2⋅2
Step 2.6.2
Multiply 2 by 2.
y=12±2√2(15+x)4
Step 2.6.3
Simplify 12±2√2(15+x)4.
y=6±√2(15+x)2
Step 2.6.4
Change the ± to +.
y=6+√2(15+x)2
y=6+√2(15+x)2
Step 2.7
Simplify the expression to solve for the - portion of the ±.
Step 2.7.1
Simplify the numerator.
Step 2.7.1.1
Raise -12 to the power of 2.
y=12±√144-4⋅2⋅(3-x)2⋅2
Step 2.7.1.2
Multiply -4 by 2.
y=12±√144-8⋅(3-x)2⋅2
Step 2.7.1.3
Apply the distributive property.
y=12±√144-8⋅3-8(-x)2⋅2
Step 2.7.1.4
Multiply -8 by 3.
y=12±√144-24-8(-x)2⋅2
Step 2.7.1.5
Multiply -1 by -8.
y=12±√144-24+8x2⋅2
Step 2.7.1.6
Subtract 24 from 144.
y=12±√120+8x2⋅2
Step 2.7.1.7
Factor 8 out of 120+8x.
Step 2.7.1.7.1
Factor 8 out of 120.
y=12±√8⋅15+8x2⋅2
Step 2.7.1.7.2
Factor 8 out of 8⋅15+8x.
y=12±√8(15+x)2⋅2
y=12±√8(15+x)2⋅2
Step 2.7.1.8
Rewrite 8(15+x) as 22⋅(2(15+x)).
Step 2.7.1.8.1
Factor 4 out of 8.
y=12±√4(2)(15+x)2⋅2
Step 2.7.1.8.2
Rewrite 4 as 22.
y=12±√22⋅(2(15+x))2⋅2
Step 2.7.1.8.3
Add parentheses.
y=12±√22⋅(2(15+x))2⋅2
y=12±√22⋅(2(15+x))2⋅2
Step 2.7.1.9
Pull terms out from under the radical.
y=12±2√2(15+x)2⋅2
y=12±2√2(15+x)2⋅2
Step 2.7.2
Multiply 2 by 2.
y=12±2√2(15+x)4
Step 2.7.3
Simplify 12±2√2(15+x)4.
y=6±√2(15+x)2
Step 2.7.4
Change the ± to -.
y=6-√2(15+x)2
y=6-√2(15+x)2
Step 2.8
The final answer is the combination of both solutions.
y=6+√2(15+x)2
y=6-√2(15+x)2
y=6+√2(15+x)2
y=6-√2(15+x)2
Step 3
Replace y with f-1(x) to show the final answer.
f-1(x)=6+√2(15+x)2,6-√2(15+x)2
Step 4
Step 4.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of f(x)=2x2-12x+3 and f-1(x)=6+√2(15+x)2,6-√2(15+x)2 and compare them.
Step 4.2
Find the range of f(x)=2x2-12x+3.
Step 4.2.1
The range is the set of all valid y values. Use the graph to find the range.
Interval Notation:
[-15,∞)
[-15,∞)
Step 4.3
Find the domain of 6+√2(15+x)2.
Step 4.3.1
Set the radicand in √2(15+x) greater than or equal to 0 to find where the expression is defined.
2(15+x)≥0
Step 4.3.2
Solve for x.
Step 4.3.2.1
Divide each term in 2(15+x)≥0 by 2 and simplify.
Step 4.3.2.1.1
Divide each term in 2(15+x)≥0 by 2.
2(15+x)2≥02
Step 4.3.2.1.2
Simplify the left side.
Step 4.3.2.1.2.1
Cancel the common factor of 2.
Step 4.3.2.1.2.1.1
Cancel the common factor.
2(15+x)2≥02
Step 4.3.2.1.2.1.2
Divide 15+x by 1.
15+x≥02
15+x≥02
15+x≥02
Step 4.3.2.1.3
Simplify the right side.
Step 4.3.2.1.3.1
Divide 0 by 2.
15+x≥0
15+x≥0
15+x≥0
Step 4.3.2.2
Subtract 15 from both sides of the inequality.
x≥-15
x≥-15
Step 4.3.3
The domain is all values of x that make the expression defined.
[-15,∞)
[-15,∞)
Step 4.4
Find the domain of f(x)=2x2-12x+3.
Step 4.4.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
(-∞,∞)
(-∞,∞)
Step 4.5
Since the domain of f-1(x)=6+√2(15+x)2,6-√2(15+x)2 is the range of f(x)=2x2-12x+3 and the range of f-1(x)=6+√2(15+x)2,6-√2(15+x)2 is the domain of f(x)=2x2-12x+3, then f-1(x)=6+√2(15+x)2,6-√2(15+x)2 is the inverse of f(x)=2x2-12x+3.
f-1(x)=6+√2(15+x)2,6-√2(15+x)2
f-1(x)=6+√2(15+x)2,6-√2(15+x)2
Step 5