Finite Math Examples

Determine if Linear 3x+5y^5=-14
3x+5y5=-143x+5y5=14
Step 1
Solve the equation for yy.
Tap for more steps...
Step 1.1
Subtract 3x3x from both sides of the equation.
5y5=-14-3x5y5=143x
Step 1.2
Divide each term in 5y5=-14-3x5y5=143x by 55 and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in 5y5=-14-3x5y5=143x by 55.
5y55=-145+-3x55y55=145+3x5
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of 55.
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
5y55=-145+-3x5
Step 1.2.2.1.2
Divide y5 by 1.
y5=-145+-3x5
y5=-145+-3x5
y5=-145+-3x5
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.2.3.1.1
Move the negative in front of the fraction.
y5=-145+-3x5
Step 1.2.3.1.2
Move the negative in front of the fraction.
y5=-145-3x5
y5=-145-3x5
y5=-145-3x5
y5=-145-3x5
Step 1.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=5-145-3x5
Step 1.4
Simplify 5-145-3x5.
Tap for more steps...
Step 1.4.1
Factor -1 out of -145-3x5.
Tap for more steps...
Step 1.4.1.1
Reorder -145 and -3x5.
y=5-3x5-145
Step 1.4.1.2
Factor -1 out of -3x5.
y=5-(3x5)-145
Step 1.4.1.3
Factor -1 out of -145.
y=5-(3x5)-(145)
Step 1.4.1.4
Factor -1 out of -(3x5)-(145).
y=5-(3x5+145)
y=5-(3x5+145)
Step 1.4.2
Combine the numerators over the common denominator.
y=5-3x+145
Step 1.4.3
Rewrite -3x+145 as ((-1)5)53x+145.
Tap for more steps...
Step 1.4.3.1
Rewrite -1 as (-1)5.
y=5(-1)53x+145
Step 1.4.3.2
Rewrite -1 as (-1)5.
y=5((-1)5)53x+145
y=5((-1)5)53x+145
Step 1.4.4
Pull terms out from under the radical.
y=(-1)553x+145
Step 1.4.5
Raise -1 to the power of 5.
y=-53x+145
Step 1.4.6
Rewrite 53x+145 as 53x+1455.
y=-53x+1455
Step 1.4.7
Multiply 53x+1455 by 554554.
y=-(53x+1455554554)
Step 1.4.8
Combine and simplify the denominator.
Tap for more steps...
Step 1.4.8.1
Multiply 53x+1455 by 554554.
y=-53x+1455455554
Step 1.4.8.2
Raise 55 to the power of 1.
y=-53x+14554551554
Step 1.4.8.3
Use the power rule aman=am+n to combine exponents.
y=-53x+14554551+4
Step 1.4.8.4
Add 1 and 4.
y=-53x+14554555
Step 1.4.8.5
Rewrite 555 as 5.
Tap for more steps...
Step 1.4.8.5.1
Use nax=axn to rewrite 55 as 515.
y=-53x+14554(515)5
Step 1.4.8.5.2
Apply the power rule and multiply exponents, (am)n=amn.
y=-53x+145545155
Step 1.4.8.5.3
Combine 15 and 5.
y=-53x+14554555
Step 1.4.8.5.4
Cancel the common factor of 5.
Tap for more steps...
Step 1.4.8.5.4.1
Cancel the common factor.
y=-53x+14554555
Step 1.4.8.5.4.2
Rewrite the expression.
y=-53x+1455451
y=-53x+1455451
Step 1.4.8.5.5
Evaluate the exponent.
y=-53x+145545
y=-53x+145545
y=-53x+145545
Step 1.4.9
Simplify the numerator.
Tap for more steps...
Step 1.4.9.1
Rewrite 554 as 554.
y=-53x+145545
Step 1.4.9.2
Raise 5 to the power of 4.
y=-53x+1456255
y=-53x+1456255
Step 1.4.10
Simplify with factoring out.
Tap for more steps...
Step 1.4.10.1
Combine using the product rule for radicals.
y=-5(3x+14)6255
Step 1.4.10.2
Reorder factors in -5(3x+14)6255.
y=-5625(3x+14)5
y=-5625(3x+14)5
y=-5625(3x+14)5
y=-5625(3x+14)5
Step 2
A linear equation is an equation of a straight line, which means that the degree of a linear equation must be 0 or 1 for each of its variables. In this case, the degree of variable y is 1, the degrees of the variables in the equation violate the linear equation definition, which means that the equation is not a linear equation.
Not Linear
 [x2  12  π  xdx ]