Enter a problem...
Finite Math Examples
3x+5y5=-143x+5y5=−14
Step 1
Step 1.1
Subtract 3x3x from both sides of the equation.
5y5=-14-3x5y5=−14−3x
Step 1.2
Divide each term in 5y5=-14-3x5y5=−14−3x by 55 and simplify.
Step 1.2.1
Divide each term in 5y5=-14-3x5y5=−14−3x by 55.
5y55=-145+-3x55y55=−145+−3x5
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Cancel the common factor of 55.
Step 1.2.2.1.1
Cancel the common factor.
5y55=-145+-3x5
Step 1.2.2.1.2
Divide y5 by 1.
y5=-145+-3x5
y5=-145+-3x5
y5=-145+-3x5
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Move the negative in front of the fraction.
y5=-145+-3x5
Step 1.2.3.1.2
Move the negative in front of the fraction.
y5=-145-3x5
y5=-145-3x5
y5=-145-3x5
y5=-145-3x5
Step 1.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=5√-145-3x5
Step 1.4
Simplify 5√-145-3x5.
Step 1.4.1
Factor -1 out of -145-3x5.
Step 1.4.1.1
Reorder -145 and -3x5.
y=5√-3x5-145
Step 1.4.1.2
Factor -1 out of -3x5.
y=5√-(3x5)-145
Step 1.4.1.3
Factor -1 out of -145.
y=5√-(3x5)-(145)
Step 1.4.1.4
Factor -1 out of -(3x5)-(145).
y=5√-(3x5+145)
y=5√-(3x5+145)
Step 1.4.2
Combine the numerators over the common denominator.
y=5√-3x+145
Step 1.4.3
Rewrite -3x+145 as ((-1)5)53x+145.
Step 1.4.3.1
Rewrite -1 as (-1)5.
y=5√(-1)53x+145
Step 1.4.3.2
Rewrite -1 as (-1)5.
y=5√((-1)5)53x+145
y=5√((-1)5)53x+145
Step 1.4.4
Pull terms out from under the radical.
y=(-1)55√3x+145
Step 1.4.5
Raise -1 to the power of 5.
y=-5√3x+145
Step 1.4.6
Rewrite 5√3x+145 as 5√3x+145√5.
y=-5√3x+145√5
Step 1.4.7
Multiply 5√3x+145√5 by 5√545√54.
y=-(5√3x+145√5⋅5√545√54)
Step 1.4.8
Combine and simplify the denominator.
Step 1.4.8.1
Multiply 5√3x+145√5 by 5√545√54.
y=-5√3x+145√545√55√54
Step 1.4.8.2
Raise 5√5 to the power of 1.
y=-5√3x+145√545√515√54
Step 1.4.8.3
Use the power rule aman=am+n to combine exponents.
y=-5√3x+145√545√51+4
Step 1.4.8.4
Add 1 and 4.
y=-5√3x+145√545√55
Step 1.4.8.5
Rewrite 5√55 as 5.
Step 1.4.8.5.1
Use n√ax=axn to rewrite 5√5 as 515.
y=-5√3x+145√54(515)5
Step 1.4.8.5.2
Apply the power rule and multiply exponents, (am)n=amn.
y=-5√3x+145√54515⋅5
Step 1.4.8.5.3
Combine 15 and 5.
y=-5√3x+145√54555
Step 1.4.8.5.4
Cancel the common factor of 5.
Step 1.4.8.5.4.1
Cancel the common factor.
y=-5√3x+145√54555
Step 1.4.8.5.4.2
Rewrite the expression.
y=-5√3x+145√5451
y=-5√3x+145√5451
Step 1.4.8.5.5
Evaluate the exponent.
y=-5√3x+145√545
y=-5√3x+145√545
y=-5√3x+145√545
Step 1.4.9
Simplify the numerator.
Step 1.4.9.1
Rewrite 5√54 as 5√54.
y=-5√3x+145√545
Step 1.4.9.2
Raise 5 to the power of 4.
y=-5√3x+145√6255
y=-5√3x+145√6255
Step 1.4.10
Simplify with factoring out.
Step 1.4.10.1
Combine using the product rule for radicals.
y=-5√(3x+14)⋅6255
Step 1.4.10.2
Reorder factors in -5√(3x+14)⋅6255.
y=-5√625(3x+14)5
y=-5√625(3x+14)5
y=-5√625(3x+14)5
y=-5√625(3x+14)5
Step 2
A linear equation is an equation of a straight line, which means that the degree of a linear equation must be 0 or 1 for each of its variables. In this case, the degree of variable y is 1, the degrees of the variables in the equation violate the linear equation definition, which means that the equation is not a linear equation.
Not Linear