Enter a problem...
Finite Math Examples
x=13⋅(y2+2)32x=13⋅(y2+2)32
Step 1
Step 1.1
Rewrite the equation as 13⋅(y2+2)32=x13⋅(y2+2)32=x.
13⋅(y2+2)32=x13⋅(y2+2)32=x
Step 1.2
Raise each side of the equation to the power of 2323 to eliminate the fractional exponent on the left side.
(13⋅(y2+2)32)23=x23(13⋅(y2+2)32)23=x23
Step 1.3
Simplify the left side.
Step 1.3.1
Simplify (13⋅(y2+2)32)23(13⋅(y2+2)32)23.
Step 1.3.1.1
Combine fractions.
Step 1.3.1.1.1
Combine 1313 and (y2+2)32(y2+2)32.
((y2+2)323)23=x23⎛⎜⎝(y2+2)323⎞⎟⎠23=x23
Step 1.3.1.1.2
Apply the product rule to (y2+2)323(y2+2)323.
((y2+2)32)23323=x23((y2+2)32)23323=x23
((y2+2)32)23323=x23((y2+2)32)23323=x23
Step 1.3.1.2
Simplify the numerator.
Step 1.3.1.2.1
Multiply the exponents in ((y2+2)32)23((y2+2)32)23.
Step 1.3.1.2.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(y2+2)32⋅23323=x23(y2+2)32⋅23323=x23
Step 1.3.1.2.1.2
Cancel the common factor of 33.
Step 1.3.1.2.1.2.1
Cancel the common factor.
(y2+2)32⋅23323=x23
Step 1.3.1.2.1.2.2
Rewrite the expression.
(y2+2)12⋅2323=x23
(y2+2)12⋅2323=x23
Step 1.3.1.2.1.3
Cancel the common factor of 2.
Step 1.3.1.2.1.3.1
Cancel the common factor.
(y2+2)12⋅2323=x23
Step 1.3.1.2.1.3.2
Rewrite the expression.
(y2+2)1323=x23
(y2+2)1323=x23
(y2+2)1323=x23
Step 1.3.1.2.2
Simplify.
y2+2323=x23
y2+2323=x23
Step 1.3.1.3
Split the fraction y2+2323 into two fractions.
y2323+2323=x23
y2323+2323=x23
y2323+2323=x23
Step 1.4
Solve for y.
Step 1.4.1
Subtract 2323 from both sides of the equation.
y2323=x23-2323
Step 1.4.2
Multiply each term in y2323=x23-2323 by 323 to eliminate the fractions.
Step 1.4.2.1
Multiply each term in y2323=x23-2323 by 323.
y2323⋅323=x23⋅323-2323⋅323
Step 1.4.2.2
Simplify the left side.
Step 1.4.2.2.1
Cancel the common factor of 323.
Step 1.4.2.2.1.1
Cancel the common factor.
y2323⋅323=x23⋅323-2323⋅323
Step 1.4.2.2.1.2
Rewrite the expression.
y2=x23⋅323-2323⋅323
y2=x23⋅323-2323⋅323
y2=x23⋅323-2323⋅323
Step 1.4.2.3
Simplify the right side.
Step 1.4.2.3.1
Cancel the common factor of 323.
Step 1.4.2.3.1.1
Move the leading negative in -2323 into the numerator.
y2=x23⋅323+-2323⋅323
Step 1.4.2.3.1.2
Cancel the common factor.
y2=x23⋅323+-2323⋅323
Step 1.4.2.3.1.3
Rewrite the expression.
y2=x23⋅323-2
y2=x23⋅323-2
y2=x23⋅323-2
y2=x23⋅323-2
y2=x23⋅323-2
Step 1.5
Combine 13 and (y2+2)32.
(y2+2)323=x
(y2+2)323=x
Step 2
A linear equation is an equation of a straight line, which means that the degree of a linear equation must be 0 or 1 for each of its variables. In this case and the degree of variable x is 1. the degrees of the variables in the equation violate the linear equation definition, which means that the equation is not a linear equation.
Not Linear