Finite Math Examples

Find the Exponential Function (-1/3,7/6)
(-13,76)
Step 1
To find an exponential function, f(x)=ax, containing the point, set f(x) in the function to the y value 76 of the point, and set x to the x value -13 of the point.
76=a-13
Step 2
Solve the equation for a.
Tap for more steps...
Step 2.1
Rewrite the equation as a-13=76.
a-13=76
Step 2.2
Raise each side of the equation to the power of -3 to eliminate the fractional exponent on the left side.
(a-13)-3=(76)-3
Step 2.3
Simplify the exponent.
Tap for more steps...
Step 2.3.1
Simplify the left side.
Tap for more steps...
Step 2.3.1.1
Simplify (a-13)-3.
Tap for more steps...
Step 2.3.1.1.1
Multiply the exponents in (a-13)-3.
Tap for more steps...
Step 2.3.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
a-13-3=(76)-3
Step 2.3.1.1.1.2
Cancel the common factor of 3.
Tap for more steps...
Step 2.3.1.1.1.2.1
Move the leading negative in -13 into the numerator.
a-13-3=(76)-3
Step 2.3.1.1.1.2.2
Factor 3 out of -3.
a-13(3(-1))=(76)-3
Step 2.3.1.1.1.2.3
Cancel the common factor.
a-13(3-1)=(76)-3
Step 2.3.1.1.1.2.4
Rewrite the expression.
a-1-1=(76)-3
a-1-1=(76)-3
Step 2.3.1.1.1.3
Multiply -1 by -1.
a1=(76)-3
a1=(76)-3
Step 2.3.1.1.2
Simplify.
a=(76)-3
a=(76)-3
a=(76)-3
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Simplify (76)-3.
Tap for more steps...
Step 2.3.2.1.1
Change the sign of the exponent by rewriting the base as its reciprocal.
a=(67)3
Step 2.3.2.1.2
Apply the product rule to 67.
a=6373
Step 2.3.2.1.3
Raise 6 to the power of 3.
a=21673
Step 2.3.2.1.4
Raise 7 to the power of 3.
a=216343
a=216343
a=216343
a=216343
a=216343
Step 3
Substitute each value for a back into the function f(x)=ax to find each possible exponential function.
f(x)=(216343)x
 [x2  12  π  xdx ]