Enter a problem...
Finite Math Examples
x(x+3)-2=3x+23x(x+3)−2=3x+23
Step 1
Step 1.1
Simplify the left side.
Step 1.1.1
Simplify each term.
Step 1.1.1.1
Apply the distributive property.
x⋅x+x⋅3-2=3x+23x⋅x+x⋅3−2=3x+23
Step 1.1.1.2
Multiply xx by xx.
x2+x⋅3-2=3x+23x2+x⋅3−2=3x+23
Step 1.1.1.3
Move 33 to the left of xx.
x2+3x-2=3x+23x2+3x−2=3x+23
x2+3x-2=3x+23x2+3x−2=3x+23
x2+3x-2=3x+23x2+3x−2=3x+23
Step 1.2
Move all the expressions to the left side of the equation.
Step 1.2.1
Subtract 3x3x from both sides of the equation.
x2+3x-2-3x=23x2+3x−2−3x=23
Step 1.2.2
Subtract 2323 from both sides of the equation.
x2+3x-2-3x-23=0x2+3x−2−3x−23=0
x2+3x-2-3x-23=0x2+3x−2−3x−23=0
Step 1.3
Simplify x2+3x-2-3x-23x2+3x−2−3x−23.
Step 1.3.1
Combine the opposite terms in x2+3x-2-3x-23x2+3x−2−3x−23.
Step 1.3.1.1
Subtract 3x3x from 3x3x.
x2+0-2-23=0x2+0−2−23=0
Step 1.3.1.2
Add x2x2 and 00.
x2-2-23=0x2−2−23=0
x2-2-23=0x2−2−23=0
Step 1.3.2
Subtract 2323 from -2−2.
x2-25=0x2−25=0
x2-25=0x2−25=0
x2-25=0x2−25=0
Step 2
The discriminant of a quadratic is the expression inside the radical of the quadratic formula.
b2-4(ac)b2−4(ac)
Step 3
Substitute in the values of aa, bb, and cc.
02-4(1⋅-25)02−4(1⋅−25)
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Raising 00 to any positive power yields 00.
0-4(1⋅-25)0−4(1⋅−25)
Step 4.1.2
Multiply -4(1⋅-25)−4(1⋅−25).
Step 4.1.2.1
Multiply -25−25 by 11.
0-4⋅-250−4⋅−25
Step 4.1.2.2
Multiply -4−4 by -25−25.
0+1000+100
0+1000+100
0+1000+100
Step 4.2
Add 00 and 100100.
100100
100100
Step 5
The nature of the roots of the quadratic can fall into one of three categories depending on the value of the discriminant (Δ)(Δ):
Δ>0Δ>0 means there are 22 distinct real roots.
Δ=0Δ=0 means there are 22 equal real roots, or 11 distinct real root.
Δ<0Δ<0 means there are no real roots, but 22 complex roots.
Since the discriminant is greater than 00, there are two real roots.
Two Real Roots