Enter a problem...
Finite Math Examples
√16-6x-x=0√16−6x−x=0
Step 1
Step 1.1
Factor 22 out of 1616.
√2(8)-6x-x=0√2(8)−6x−x=0
Step 1.2
Factor 22 out of -6x−6x.
√2(8)+2(-3x)-x=0√2(8)+2(−3x)−x=0
Step 1.3
Factor 22 out of 2(8)+2(-3x)2(8)+2(−3x).
√2(8-3x)-x=0√2(8−3x)−x=0
√2(8-3x)-x=0√2(8−3x)−x=0
Step 2
Add xx to both sides of the equation.
√2(8-3x)=x√2(8−3x)=x
Step 3
To remove the radical on the left side of the equation, square both sides of the equation.
√2(8-3x)2=x2√2(8−3x)2=x2
Step 4
Step 4.1
Use n√ax=axnn√ax=axn to rewrite √2(8-3x)√2(8−3x) as (2(8-3x))12(2(8−3x))12.
((2(8-3x))12)2=x2((2(8−3x))12)2=x2
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify ((2(8-3x))12)2((2(8−3x))12)2.
Step 4.2.1.1
Multiply the exponents in ((2(8-3x))12)2((2(8−3x))12)2.
Step 4.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(2(8-3x))12⋅2=x2(2(8−3x))12⋅2=x2
Step 4.2.1.1.2
Cancel the common factor of 22.
Step 4.2.1.1.2.1
Cancel the common factor.
(2(8-3x))12⋅2=x2
Step 4.2.1.1.2.2
Rewrite the expression.
(2(8-3x))1=x2
(2(8-3x))1=x2
(2(8-3x))1=x2
Step 4.2.1.2
Apply the distributive property.
(2⋅8+2(-3x))1=x2
Step 4.2.1.3
Multiply.
Step 4.2.1.3.1
Multiply 2 by 8.
(16+2(-3x))1=x2
Step 4.2.1.3.2
Multiply -3 by 2.
(16-6x)1=x2
Step 4.2.1.3.3
Simplify.
16-6x=x2
16-6x=x2
16-6x=x2
16-6x=x2
16-6x=x2
Step 5
Step 5.1
Subtract x2 from both sides of the equation.
16-6x-x2=0
Step 5.2
Factor the left side of the equation.
Step 5.2.1
Factor -1 out of 16-6x-x2.
Step 5.2.1.1
Reorder the expression.
Step 5.2.1.1.1
Move 16.
-6x-x2+16=0
Step 5.2.1.1.2
Reorder -6x and -x2.
-x2-6x+16=0
-x2-6x+16=0
Step 5.2.1.2
Factor -1 out of -x2.
-(x2)-6x+16=0
Step 5.2.1.3
Factor -1 out of -6x.
-(x2)-(6x)+16=0
Step 5.2.1.4
Rewrite 16 as -1(-16).
-(x2)-(6x)-1⋅-16=0
Step 5.2.1.5
Factor -1 out of -(x2)-(6x).
-(x2+6x)-1⋅-16=0
Step 5.2.1.6
Factor -1 out of -(x2+6x)-1(-16).
-(x2+6x-16)=0
-(x2+6x-16)=0
Step 5.2.2
Factor.
Step 5.2.2.1
Factor x2+6x-16 using the AC method.
Step 5.2.2.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -16 and whose sum is 6.
-2,8
Step 5.2.2.1.2
Write the factored form using these integers.
-((x-2)(x+8))=0
-((x-2)(x+8))=0
Step 5.2.2.2
Remove unnecessary parentheses.
-(x-2)(x+8)=0
-(x-2)(x+8)=0
-(x-2)(x+8)=0
Step 5.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-2=0
x+8=0
Step 5.4
Set x-2 equal to 0 and solve for x.
Step 5.4.1
Set x-2 equal to 0.
x-2=0
Step 5.4.2
Add 2 to both sides of the equation.
x=2
x=2
Step 5.5
Set x+8 equal to 0 and solve for x.
Step 5.5.1
Set x+8 equal to 0.
x+8=0
Step 5.5.2
Subtract 8 from both sides of the equation.
x=-8
x=-8
Step 5.6
The final solution is all the values that make -(x-2)(x+8)=0 true.
x=2,-8
x=2,-8
Step 6
Exclude the solutions that do not make √2(8-3x)-x=0 true.
x=2