Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Rewrite as .
Step 2.1.2
Expand using the FOIL Method.
Step 2.1.2.1
Apply the distributive property.
Step 2.1.2.2
Apply the distributive property.
Step 2.1.2.3
Apply the distributive property.
Step 2.1.3
Simplify and combine like terms.
Step 2.1.3.1
Simplify each term.
Step 2.1.3.1.1
Multiply by .
Step 2.1.3.1.2
Multiply by .
Step 2.1.3.1.3
Multiply by .
Step 2.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 2.1.3.1.5
Multiply by by adding the exponents.
Step 2.1.3.1.5.1
Move .
Step 2.1.3.1.5.2
Multiply by .
Step 2.1.3.1.6
Multiply by .
Step 2.1.3.1.7
Multiply by .
Step 2.1.3.2
Subtract from .
Step 2.1.4
Apply the distributive property.
Step 2.1.5
Simplify.
Step 2.1.5.1
Multiply by .
Step 2.1.5.2
Multiply by .
Step 2.1.6
Rewrite as .
Step 2.1.7
Expand using the FOIL Method.
Step 2.1.7.1
Apply the distributive property.
Step 2.1.7.2
Apply the distributive property.
Step 2.1.7.3
Apply the distributive property.
Step 2.1.8
Simplify and combine like terms.
Step 2.1.8.1
Simplify each term.
Step 2.1.8.1.1
Multiply by .
Step 2.1.8.1.2
Multiply by .
Step 2.1.8.1.3
Multiply by .
Step 2.1.8.1.4
Rewrite using the commutative property of multiplication.
Step 2.1.8.1.5
Multiply by by adding the exponents.
Step 2.1.8.1.5.1
Move .
Step 2.1.8.1.5.2
Multiply by .
Step 2.1.8.1.6
Multiply by .
Step 2.1.8.1.7
Multiply by .
Step 2.1.8.2
Subtract from .
Step 2.1.9
Apply the distributive property.
Step 2.1.10
Simplify.
Step 2.1.10.1
Multiply by .
Step 2.1.10.2
Multiply by .
Step 2.2
Subtract from .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Add to both sides of the equation.
Step 3.3
Add to both sides of the equation.
Step 3.4
Subtract from both sides of the equation.
Step 3.5
Add to both sides of the equation.
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5
Step 5.1
First, use the positive value of the to find the first solution.
Step 5.2
Next, use the negative value of the to find the second solution.
Step 5.3
The complete solution is the result of both the positive and negative portions of the solution.