Finite Math Examples

Solve by Factoring (2x)/(1x)+(x+3)/(x^2-1)=1
2x1x+x+3x2-1=12x1x+x+3x21=1
Step 1
Subtract 1 from both sides of the equation.
2x1x+x+3x2-1-1=0
Step 2
Simplify 2x1x+x+3x2-1-1.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Cancel the common factor of x.
Tap for more steps...
Step 2.1.1.1
Cancel the common factor.
2x1x+x+3x2-1-1=0
Step 2.1.1.2
Divide 2 by 1.
2+x+3x2-1-1=0
2+x+3x2-1-1=0
Step 2.1.2
Simplify the denominator.
Tap for more steps...
Step 2.1.2.1
Rewrite 1 as 12.
2+x+3x2-12-1=0
Step 2.1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=1.
2+x+3(x+1)(x-1)-1=0
2+x+3(x+1)(x-1)-1=0
2+x+3(x+1)(x-1)-1=0
Step 2.2
To write 2 as a fraction with a common denominator, multiply by (x+1)(x-1)(x+1)(x-1).
2(x+1)(x-1)(x+1)(x-1)+x+3(x+1)(x-1)-1=0
Step 2.3
Combine 2 and (x+1)(x-1)(x+1)(x-1).
2((x+1)(x-1))(x+1)(x-1)+x+3(x+1)(x-1)-1=0
Step 2.4
Combine the numerators over the common denominator.
2((x+1)(x-1))+x+3(x+1)(x-1)-1=0
Step 2.5
Simplify the numerator.
Tap for more steps...
Step 2.5.1
Apply the distributive property.
(2x+21)(x-1)+x+3(x+1)(x-1)-1=0
Step 2.5.2
Multiply 2 by 1.
(2x+2)(x-1)+x+3(x+1)(x-1)-1=0
Step 2.5.3
Expand (2x+2)(x-1) using the FOIL Method.
Tap for more steps...
Step 2.5.3.1
Apply the distributive property.
2x(x-1)+2(x-1)+x+3(x+1)(x-1)-1=0
Step 2.5.3.2
Apply the distributive property.
2xx+2x-1+2(x-1)+x+3(x+1)(x-1)-1=0
Step 2.5.3.3
Apply the distributive property.
2xx+2x-1+2x+2-1+x+3(x+1)(x-1)-1=0
2xx+2x-1+2x+2-1+x+3(x+1)(x-1)-1=0
Step 2.5.4
Simplify and combine like terms.
Tap for more steps...
Step 2.5.4.1
Simplify each term.
Tap for more steps...
Step 2.5.4.1.1
Multiply x by x by adding the exponents.
Tap for more steps...
Step 2.5.4.1.1.1
Move x.
2(xx)+2x-1+2x+2-1+x+3(x+1)(x-1)-1=0
Step 2.5.4.1.1.2
Multiply x by x.
2x2+2x-1+2x+2-1+x+3(x+1)(x-1)-1=0
2x2+2x-1+2x+2-1+x+3(x+1)(x-1)-1=0
Step 2.5.4.1.2
Multiply -1 by 2.
2x2-2x+2x+2-1+x+3(x+1)(x-1)-1=0
Step 2.5.4.1.3
Multiply 2 by -1.
2x2-2x+2x-2+x+3(x+1)(x-1)-1=0
2x2-2x+2x-2+x+3(x+1)(x-1)-1=0
Step 2.5.4.2
Add -2x and 2x.
2x2+0-2+x+3(x+1)(x-1)-1=0
Step 2.5.4.3
Add 2x2 and 0.
2x2-2+x+3(x+1)(x-1)-1=0
2x2-2+x+3(x+1)(x-1)-1=0
Step 2.5.5
Add -2 and 3.
2x2+x+1(x+1)(x-1)-1=0
2x2+x+1(x+1)(x-1)-1=0
Step 2.6
To write -1 as a fraction with a common denominator, multiply by (x+1)(x-1)(x+1)(x-1).
2x2+x+1(x+1)(x-1)-1(x+1)(x-1)(x+1)(x-1)=0
Step 2.7
Combine -1 and (x+1)(x-1)(x+1)(x-1).
2x2+x+1(x+1)(x-1)+-((x+1)(x-1))(x+1)(x-1)=0
Step 2.8
Combine the numerators over the common denominator.
2x2+x+1-((x+1)(x-1))(x+1)(x-1)=0
Step 2.9
Simplify the numerator.
Tap for more steps...
Step 2.9.1
Apply the distributive property.
2x2+x+1+(-x-11)(x-1)(x+1)(x-1)=0
Step 2.9.2
Multiply -1 by 1.
2x2+x+1+(-x-1)(x-1)(x+1)(x-1)=0
Step 2.9.3
Expand (-x-1)(x-1) using the FOIL Method.
Tap for more steps...
Step 2.9.3.1
Apply the distributive property.
2x2+x+1-x(x-1)-1(x-1)(x+1)(x-1)=0
Step 2.9.3.2
Apply the distributive property.
2x2+x+1-xx-x-1-1(x-1)(x+1)(x-1)=0
Step 2.9.3.3
Apply the distributive property.
2x2+x+1-xx-x-1-1x-1-1(x+1)(x-1)=0
2x2+x+1-xx-x-1-1x-1-1(x+1)(x-1)=0
Step 2.9.4
Simplify and combine like terms.
Tap for more steps...
Step 2.9.4.1
Simplify each term.
Tap for more steps...
Step 2.9.4.1.1
Multiply x by x by adding the exponents.
Tap for more steps...
Step 2.9.4.1.1.1
Move x.
2x2+x+1-(xx)-x-1-1x-1-1(x+1)(x-1)=0
Step 2.9.4.1.1.2
Multiply x by x.
2x2+x+1-x2-x-1-1x-1-1(x+1)(x-1)=0
2x2+x+1-x2-x-1-1x-1-1(x+1)(x-1)=0
Step 2.9.4.1.2
Multiply -x-1.
Tap for more steps...
Step 2.9.4.1.2.1
Multiply -1 by -1.
2x2+x+1-x2+1x-1x-1-1(x+1)(x-1)=0
Step 2.9.4.1.2.2
Multiply x by 1.
2x2+x+1-x2+x-1x-1-1(x+1)(x-1)=0
2x2+x+1-x2+x-1x-1-1(x+1)(x-1)=0
Step 2.9.4.1.3
Rewrite -1x as -x.
2x2+x+1-x2+x-x-1-1(x+1)(x-1)=0
Step 2.9.4.1.4
Multiply -1 by -1.
2x2+x+1-x2+x-x+1(x+1)(x-1)=0
2x2+x+1-x2+x-x+1(x+1)(x-1)=0
Step 2.9.4.2
Subtract x from x.
2x2+x+1-x2+0+1(x+1)(x-1)=0
Step 2.9.4.3
Add -x2 and 0.
2x2+x+1-x2+1(x+1)(x-1)=0
2x2+x+1-x2+1(x+1)(x-1)=0
Step 2.9.5
Subtract x2 from 2x2.
x2+x+1+1(x+1)(x-1)=0
Step 2.9.6
Add 1 and 1.
x2+x+2(x+1)(x-1)=0
x2+x+2(x+1)(x-1)=0
x2+x+2(x+1)(x-1)=0
Step 3
Set the numerator equal to zero.
x2+x+2=0
Step 4
Solve the equation for x.
Tap for more steps...
Step 4.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4.2
Substitute the values a=1, b=1, and c=2 into the quadratic formula and solve for x.
-1±12-4(12)21
Step 4.3
Simplify.
Tap for more steps...
Step 4.3.1
Simplify the numerator.
Tap for more steps...
Step 4.3.1.1
One to any power is one.
x=-1±1-41221
Step 4.3.1.2
Multiply -412.
Tap for more steps...
Step 4.3.1.2.1
Multiply -4 by 1.
x=-1±1-4221
Step 4.3.1.2.2
Multiply -4 by 2.
x=-1±1-821
x=-1±1-821
Step 4.3.1.3
Subtract 8 from 1.
x=-1±-721
Step 4.3.1.4
Rewrite -7 as -1(7).
x=-1±-1721
Step 4.3.1.5
Rewrite -1(7) as -17.
x=-1±-1721
Step 4.3.1.6
Rewrite -1 as i.
x=-1±i721
x=-1±i721
Step 4.3.2
Multiply 2 by 1.
x=-1±i72
x=-1±i72
Step 4.4
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 4.4.1
Simplify the numerator.
Tap for more steps...
Step 4.4.1.1
One to any power is one.
x=-1±1-41221
Step 4.4.1.2
Multiply -412.
Tap for more steps...
Step 4.4.1.2.1
Multiply -4 by 1.
x=-1±1-4221
Step 4.4.1.2.2
Multiply -4 by 2.
x=-1±1-821
x=-1±1-821
Step 4.4.1.3
Subtract 8 from 1.
x=-1±-721
Step 4.4.1.4
Rewrite -7 as -1(7).
x=-1±-1721
Step 4.4.1.5
Rewrite -1(7) as -17.
x=-1±-1721
Step 4.4.1.6
Rewrite -1 as i.
x=-1±i721
x=-1±i721
Step 4.4.2
Multiply 2 by 1.
x=-1±i72
Step 4.4.3
Change the ± to +.
x=-1+i72
Step 4.4.4
Rewrite -1 as -1(1).
x=-11+i72
Step 4.4.5
Factor -1 out of i7.
x=-11-(-i7)2
Step 4.4.6
Factor -1 out of -1(1)-(-i7).
x=-1(1-i7)2
Step 4.4.7
Move the negative in front of the fraction.
x=-1-i72
x=-1-i72
Step 4.5
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 4.5.1
Simplify the numerator.
Tap for more steps...
Step 4.5.1.1
One to any power is one.
x=-1±1-41221
Step 4.5.1.2
Multiply -412.
Tap for more steps...
Step 4.5.1.2.1
Multiply -4 by 1.
x=-1±1-4221
Step 4.5.1.2.2
Multiply -4 by 2.
x=-1±1-821
x=-1±1-821
Step 4.5.1.3
Subtract 8 from 1.
x=-1±-721
Step 4.5.1.4
Rewrite -7 as -1(7).
x=-1±-1721
Step 4.5.1.5
Rewrite -1(7) as -17.
x=-1±-1721
Step 4.5.1.6
Rewrite -1 as i.
x=-1±i721
x=-1±i721
Step 4.5.2
Multiply 2 by 1.
x=-1±i72
Step 4.5.3
Change the ± to -.
x=-1-i72
Step 4.5.4
Rewrite -1 as -1(1).
x=-11-i72
Step 4.5.5
Factor -1 out of -i7.
x=-11-(i7)2
Step 4.5.6
Factor -1 out of -1(1)-(i7).
x=-1(1+i7)2
Step 4.5.7
Move the negative in front of the fraction.
x=-1+i72
x=-1+i72
Step 4.6
The final answer is the combination of both solutions.
x=-1-i72,-1+i72
x=-1-i72,-1+i72
 [x2  12  π  xdx ]