Enter a problem...
Finite Math Examples
2x1x+x+3x2-1=12x1x+x+3x2−1=1
Step 1
Subtract 1 from both sides of the equation.
2x1x+x+3x2-1-1=0
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Cancel the common factor of x.
Step 2.1.1.1
Cancel the common factor.
2x1x+x+3x2-1-1=0
Step 2.1.1.2
Divide 2 by 1.
2+x+3x2-1-1=0
2+x+3x2-1-1=0
Step 2.1.2
Simplify the denominator.
Step 2.1.2.1
Rewrite 1 as 12.
2+x+3x2-12-1=0
Step 2.1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=1.
2+x+3(x+1)(x-1)-1=0
2+x+3(x+1)(x-1)-1=0
2+x+3(x+1)(x-1)-1=0
Step 2.2
To write 2 as a fraction with a common denominator, multiply by (x+1)(x-1)(x+1)(x-1).
2⋅(x+1)(x-1)(x+1)(x-1)+x+3(x+1)(x-1)-1=0
Step 2.3
Combine 2 and (x+1)(x-1)(x+1)(x-1).
2((x+1)(x-1))(x+1)(x-1)+x+3(x+1)(x-1)-1=0
Step 2.4
Combine the numerators over the common denominator.
2((x+1)(x-1))+x+3(x+1)(x-1)-1=0
Step 2.5
Simplify the numerator.
Step 2.5.1
Apply the distributive property.
(2x+2⋅1)(x-1)+x+3(x+1)(x-1)-1=0
Step 2.5.2
Multiply 2 by 1.
(2x+2)(x-1)+x+3(x+1)(x-1)-1=0
Step 2.5.3
Expand (2x+2)(x-1) using the FOIL Method.
Step 2.5.3.1
Apply the distributive property.
2x(x-1)+2(x-1)+x+3(x+1)(x-1)-1=0
Step 2.5.3.2
Apply the distributive property.
2x⋅x+2x⋅-1+2(x-1)+x+3(x+1)(x-1)-1=0
Step 2.5.3.3
Apply the distributive property.
2x⋅x+2x⋅-1+2x+2⋅-1+x+3(x+1)(x-1)-1=0
2x⋅x+2x⋅-1+2x+2⋅-1+x+3(x+1)(x-1)-1=0
Step 2.5.4
Simplify and combine like terms.
Step 2.5.4.1
Simplify each term.
Step 2.5.4.1.1
Multiply x by x by adding the exponents.
Step 2.5.4.1.1.1
Move x.
2(x⋅x)+2x⋅-1+2x+2⋅-1+x+3(x+1)(x-1)-1=0
Step 2.5.4.1.1.2
Multiply x by x.
2x2+2x⋅-1+2x+2⋅-1+x+3(x+1)(x-1)-1=0
2x2+2x⋅-1+2x+2⋅-1+x+3(x+1)(x-1)-1=0
Step 2.5.4.1.2
Multiply -1 by 2.
2x2-2x+2x+2⋅-1+x+3(x+1)(x-1)-1=0
Step 2.5.4.1.3
Multiply 2 by -1.
2x2-2x+2x-2+x+3(x+1)(x-1)-1=0
2x2-2x+2x-2+x+3(x+1)(x-1)-1=0
Step 2.5.4.2
Add -2x and 2x.
2x2+0-2+x+3(x+1)(x-1)-1=0
Step 2.5.4.3
Add 2x2 and 0.
2x2-2+x+3(x+1)(x-1)-1=0
2x2-2+x+3(x+1)(x-1)-1=0
Step 2.5.5
Add -2 and 3.
2x2+x+1(x+1)(x-1)-1=0
2x2+x+1(x+1)(x-1)-1=0
Step 2.6
To write -1 as a fraction with a common denominator, multiply by (x+1)(x-1)(x+1)(x-1).
2x2+x+1(x+1)(x-1)-1⋅(x+1)(x-1)(x+1)(x-1)=0
Step 2.7
Combine -1 and (x+1)(x-1)(x+1)(x-1).
2x2+x+1(x+1)(x-1)+-((x+1)(x-1))(x+1)(x-1)=0
Step 2.8
Combine the numerators over the common denominator.
2x2+x+1-((x+1)(x-1))(x+1)(x-1)=0
Step 2.9
Simplify the numerator.
Step 2.9.1
Apply the distributive property.
2x2+x+1+(-x-1⋅1)(x-1)(x+1)(x-1)=0
Step 2.9.2
Multiply -1 by 1.
2x2+x+1+(-x-1)(x-1)(x+1)(x-1)=0
Step 2.9.3
Expand (-x-1)(x-1) using the FOIL Method.
Step 2.9.3.1
Apply the distributive property.
2x2+x+1-x(x-1)-1(x-1)(x+1)(x-1)=0
Step 2.9.3.2
Apply the distributive property.
2x2+x+1-x⋅x-x⋅-1-1(x-1)(x+1)(x-1)=0
Step 2.9.3.3
Apply the distributive property.
2x2+x+1-x⋅x-x⋅-1-1x-1⋅-1(x+1)(x-1)=0
2x2+x+1-x⋅x-x⋅-1-1x-1⋅-1(x+1)(x-1)=0
Step 2.9.4
Simplify and combine like terms.
Step 2.9.4.1
Simplify each term.
Step 2.9.4.1.1
Multiply x by x by adding the exponents.
Step 2.9.4.1.1.1
Move x.
2x2+x+1-(x⋅x)-x⋅-1-1x-1⋅-1(x+1)(x-1)=0
Step 2.9.4.1.1.2
Multiply x by x.
2x2+x+1-x2-x⋅-1-1x-1⋅-1(x+1)(x-1)=0
2x2+x+1-x2-x⋅-1-1x-1⋅-1(x+1)(x-1)=0
Step 2.9.4.1.2
Multiply -x⋅-1.
Step 2.9.4.1.2.1
Multiply -1 by -1.
2x2+x+1-x2+1x-1x-1⋅-1(x+1)(x-1)=0
Step 2.9.4.1.2.2
Multiply x by 1.
2x2+x+1-x2+x-1x-1⋅-1(x+1)(x-1)=0
2x2+x+1-x2+x-1x-1⋅-1(x+1)(x-1)=0
Step 2.9.4.1.3
Rewrite -1x as -x.
2x2+x+1-x2+x-x-1⋅-1(x+1)(x-1)=0
Step 2.9.4.1.4
Multiply -1 by -1.
2x2+x+1-x2+x-x+1(x+1)(x-1)=0
2x2+x+1-x2+x-x+1(x+1)(x-1)=0
Step 2.9.4.2
Subtract x from x.
2x2+x+1-x2+0+1(x+1)(x-1)=0
Step 2.9.4.3
Add -x2 and 0.
2x2+x+1-x2+1(x+1)(x-1)=0
2x2+x+1-x2+1(x+1)(x-1)=0
Step 2.9.5
Subtract x2 from 2x2.
x2+x+1+1(x+1)(x-1)=0
Step 2.9.6
Add 1 and 1.
x2+x+2(x+1)(x-1)=0
x2+x+2(x+1)(x-1)=0
x2+x+2(x+1)(x-1)=0
Step 3
Set the numerator equal to zero.
x2+x+2=0
Step 4
Step 4.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 4.2
Substitute the values a=1, b=1, and c=2 into the quadratic formula and solve for x.
-1±√12-4⋅(1⋅2)2⋅1
Step 4.3
Simplify.
Step 4.3.1
Simplify the numerator.
Step 4.3.1.1
One to any power is one.
x=-1±√1-4⋅1⋅22⋅1
Step 4.3.1.2
Multiply -4⋅1⋅2.
Step 4.3.1.2.1
Multiply -4 by 1.
x=-1±√1-4⋅22⋅1
Step 4.3.1.2.2
Multiply -4 by 2.
x=-1±√1-82⋅1
x=-1±√1-82⋅1
Step 4.3.1.3
Subtract 8 from 1.
x=-1±√-72⋅1
Step 4.3.1.4
Rewrite -7 as -1(7).
x=-1±√-1⋅72⋅1
Step 4.3.1.5
Rewrite √-1(7) as √-1⋅√7.
x=-1±√-1⋅√72⋅1
Step 4.3.1.6
Rewrite √-1 as i.
x=-1±i√72⋅1
x=-1±i√72⋅1
Step 4.3.2
Multiply 2 by 1.
x=-1±i√72
x=-1±i√72
Step 4.4
Simplify the expression to solve for the + portion of the ±.
Step 4.4.1
Simplify the numerator.
Step 4.4.1.1
One to any power is one.
x=-1±√1-4⋅1⋅22⋅1
Step 4.4.1.2
Multiply -4⋅1⋅2.
Step 4.4.1.2.1
Multiply -4 by 1.
x=-1±√1-4⋅22⋅1
Step 4.4.1.2.2
Multiply -4 by 2.
x=-1±√1-82⋅1
x=-1±√1-82⋅1
Step 4.4.1.3
Subtract 8 from 1.
x=-1±√-72⋅1
Step 4.4.1.4
Rewrite -7 as -1(7).
x=-1±√-1⋅72⋅1
Step 4.4.1.5
Rewrite √-1(7) as √-1⋅√7.
x=-1±√-1⋅√72⋅1
Step 4.4.1.6
Rewrite √-1 as i.
x=-1±i√72⋅1
x=-1±i√72⋅1
Step 4.4.2
Multiply 2 by 1.
x=-1±i√72
Step 4.4.3
Change the ± to +.
x=-1+i√72
Step 4.4.4
Rewrite -1 as -1(1).
x=-1⋅1+i√72
Step 4.4.5
Factor -1 out of i√7.
x=-1⋅1-(-i√7)2
Step 4.4.6
Factor -1 out of -1(1)-(-i√7).
x=-1(1-i√7)2
Step 4.4.7
Move the negative in front of the fraction.
x=-1-i√72
x=-1-i√72
Step 4.5
Simplify the expression to solve for the - portion of the ±.
Step 4.5.1
Simplify the numerator.
Step 4.5.1.1
One to any power is one.
x=-1±√1-4⋅1⋅22⋅1
Step 4.5.1.2
Multiply -4⋅1⋅2.
Step 4.5.1.2.1
Multiply -4 by 1.
x=-1±√1-4⋅22⋅1
Step 4.5.1.2.2
Multiply -4 by 2.
x=-1±√1-82⋅1
x=-1±√1-82⋅1
Step 4.5.1.3
Subtract 8 from 1.
x=-1±√-72⋅1
Step 4.5.1.4
Rewrite -7 as -1(7).
x=-1±√-1⋅72⋅1
Step 4.5.1.5
Rewrite √-1(7) as √-1⋅√7.
x=-1±√-1⋅√72⋅1
Step 4.5.1.6
Rewrite √-1 as i.
x=-1±i√72⋅1
x=-1±i√72⋅1
Step 4.5.2
Multiply 2 by 1.
x=-1±i√72
Step 4.5.3
Change the ± to -.
x=-1-i√72
Step 4.5.4
Rewrite -1 as -1(1).
x=-1⋅1-i√72
Step 4.5.5
Factor -1 out of -i√7.
x=-1⋅1-(i√7)2
Step 4.5.6
Factor -1 out of -1(1)-(i√7).
x=-1(1+i√7)2
Step 4.5.7
Move the negative in front of the fraction.
x=-1+i√72
x=-1+i√72
Step 4.6
The final answer is the combination of both solutions.
x=-1-i√72,-1+i√72
x=-1-i√72,-1+i√72