Enter a problem...
Finite Math Examples
(x-3)2+(y-5)2=r2(x−3)2+(y−5)2=r2
Step 1
Subtract r2r2 from both sides of the equation.
(x-3)2+(y-5)2-r2=0(x−3)2+(y−5)2−r2=0
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Rewrite (x-3)2(x−3)2 as (x-3)(x-3)(x−3)(x−3).
(x-3)(x-3)+(y-5)2-r2=0(x−3)(x−3)+(y−5)2−r2=0
Step 2.1.2
Expand (x-3)(x-3)(x−3)(x−3) using the FOIL Method.
Step 2.1.2.1
Apply the distributive property.
x(x-3)-3(x-3)+(y-5)2-r2=0x(x−3)−3(x−3)+(y−5)2−r2=0
Step 2.1.2.2
Apply the distributive property.
x⋅x+x⋅-3-3(x-3)+(y-5)2-r2=0x⋅x+x⋅−3−3(x−3)+(y−5)2−r2=0
Step 2.1.2.3
Apply the distributive property.
x⋅x+x⋅-3-3x-3⋅-3+(y-5)2-r2=0x⋅x+x⋅−3−3x−3⋅−3+(y−5)2−r2=0
x⋅x+x⋅-3-3x-3⋅-3+(y-5)2-r2=0x⋅x+x⋅−3−3x−3⋅−3+(y−5)2−r2=0
Step 2.1.3
Simplify and combine like terms.
Step 2.1.3.1
Simplify each term.
Step 2.1.3.1.1
Multiply xx by xx.
x2+x⋅-3-3x-3⋅-3+(y-5)2-r2=0x2+x⋅−3−3x−3⋅−3+(y−5)2−r2=0
Step 2.1.3.1.2
Move -3−3 to the left of xx.
x2-3⋅x-3x-3⋅-3+(y-5)2-r2=0x2−3⋅x−3x−3⋅−3+(y−5)2−r2=0
Step 2.1.3.1.3
Multiply -3−3 by -3−3.
x2-3x-3x+9+(y-5)2-r2=0x2−3x−3x+9+(y−5)2−r2=0
x2-3x-3x+9+(y-5)2-r2=0x2−3x−3x+9+(y−5)2−r2=0
Step 2.1.3.2
Subtract 3x3x from -3x−3x.
x2-6x+9+(y-5)2-r2=0x2−6x+9+(y−5)2−r2=0
x2-6x+9+(y-5)2-r2=0x2−6x+9+(y−5)2−r2=0
Step 2.1.4
Rewrite (y-5)2(y−5)2 as (y-5)(y-5)(y−5)(y−5).
x2-6x+9+(y-5)(y-5)-r2=0x2−6x+9+(y−5)(y−5)−r2=0
Step 2.1.5
Expand (y-5)(y-5)(y−5)(y−5) using the FOIL Method.
Step 2.1.5.1
Apply the distributive property.
x2-6x+9+y(y-5)-5(y-5)-r2=0x2−6x+9+y(y−5)−5(y−5)−r2=0
Step 2.1.5.2
Apply the distributive property.
x2-6x+9+y⋅y+y⋅-5-5(y-5)-r2=0x2−6x+9+y⋅y+y⋅−5−5(y−5)−r2=0
Step 2.1.5.3
Apply the distributive property.
x2-6x+9+y⋅y+y⋅-5-5y-5⋅-5-r2=0x2−6x+9+y⋅y+y⋅−5−5y−5⋅−5−r2=0
x2-6x+9+y⋅y+y⋅-5-5y-5⋅-5-r2=0x2−6x+9+y⋅y+y⋅−5−5y−5⋅−5−r2=0
Step 2.1.6
Simplify and combine like terms.
Step 2.1.6.1
Simplify each term.
Step 2.1.6.1.1
Multiply yy by yy.
x2-6x+9+y2+y⋅-5-5y-5⋅-5-r2=0x2−6x+9+y2+y⋅−5−5y−5⋅−5−r2=0
Step 2.1.6.1.2
Move -5−5 to the left of yy.
x2-6x+9+y2-5⋅y-5y-5⋅-5-r2=0x2−6x+9+y2−5⋅y−5y−5⋅−5−r2=0
Step 2.1.6.1.3
Multiply -5−5 by -5−5.
x2-6x+9+y2-5y-5y+25-r2=0x2−6x+9+y2−5y−5y+25−r2=0
x2-6x+9+y2-5y-5y+25-r2=0x2−6x+9+y2−5y−5y+25−r2=0
Step 2.1.6.2
Subtract 5y5y from -5y−5y.
x2-6x+9+y2-10y+25-r2=0x2−6x+9+y2−10y+25−r2=0
x2-6x+9+y2-10y+25-r2=0x2−6x+9+y2−10y+25−r2=0
x2-6x+9+y2-10y+25-r2=0x2−6x+9+y2−10y+25−r2=0
Step 2.2
Add 99 and 2525.
x2-6x+y2-10y+34-r2=0x2−6x+y2−10y+34−r2=0
x2-6x+y2-10y+34-r2=0x2−6x+y2−10y+34−r2=0
Step 3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 4
Substitute the values a=1a=1, b=-6b=−6, and c=y2-10y+34-r2c=y2−10y+34−r2 into the quadratic formula and solve for xx.
6±√(-6)2-4⋅(1⋅(y2-10y+34-r2))2⋅16±√(−6)2−4⋅(1⋅(y2−10y+34−r2))2⋅1
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise -6−6 to the power of 22.
x=6±√36-4⋅1⋅(y2-10y+34-r2)2⋅1x=6±√36−4⋅1⋅(y2−10y+34−r2)2⋅1
Step 5.1.2
Multiply -4−4 by 11.
x=6±√36-4⋅(y2-10y+34-r2)2⋅1x=6±√36−4⋅(y2−10y+34−r2)2⋅1
Step 5.1.3
Apply the distributive property.
x=6±√36-4y2-4(-10y)-4⋅34-4(-r2)2⋅1x=6±√36−4y2−4(−10y)−4⋅34−4(−r2)2⋅1
Step 5.1.4
Simplify.
Step 5.1.4.1
Multiply -10−10 by -4−4.
x=6±√36-4y2+40y-4⋅34-4(-r2)2⋅1x=6±√36−4y2+40y−4⋅34−4(−r2)2⋅1
Step 5.1.4.2
Multiply -4 by 34.
x=6±√36-4y2+40y-136-4(-r2)2⋅1
Step 5.1.4.3
Multiply -1 by -4.
x=6±√36-4y2+40y-136+4r22⋅1
x=6±√36-4y2+40y-136+4r22⋅1
Step 5.1.5
Subtract 136 from 36.
x=6±√-4y2+40y-100+4r22⋅1
Step 5.1.6
Rewrite -4y2+40y-100+4r2 in a factored form.
Step 5.1.6.1
Factor 4 out of -4y2+40y-100+4r2.
Step 5.1.6.1.1
Factor 4 out of -4y2.
x=6±√4(-y2)+40y-100+4r22⋅1
Step 5.1.6.1.2
Factor 4 out of 40y.
x=6±√4(-y2)+4(10y)-100+4r22⋅1
Step 5.1.6.1.3
Factor 4 out of -100.
x=6±√4(-y2)+4(10y)+4⋅-25+4r22⋅1
Step 5.1.6.1.4
Factor 4 out of 4(-y2)+4(10y).
x=6±√4(-y2+10y)+4⋅-25+4r22⋅1
Step 5.1.6.1.5
Factor 4 out of 4(-y2+10y)+4⋅-25.
x=6±√4(-y2+10y-25)+4r22⋅1
Step 5.1.6.1.6
Factor 4 out of 4(-y2+10y-25)+4r2.
x=6±√4(-y2+10y-25+r2)2⋅1
x=6±√4(-y2+10y-25+r2)2⋅1
Step 5.1.6.2
Rewrite y2-10y+25 as (y-5)2.
Step 5.1.6.2.1
Rewrite 25 as 52.
x=6±√4(-(y2-10y+52)+r2)2⋅1
Step 5.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
10y=2⋅y⋅5
Step 5.1.6.2.3
Rewrite the polynomial.
x=6±√4(-(y2-2⋅y⋅5+52)+r2)2⋅1
Step 5.1.6.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=y and b=5.
x=6±√4(-(y-5)2+r2)2⋅1
x=6±√4(-(y-5)2+r2)2⋅1
Step 5.1.6.3
Reorder -(y-5)2 and r2.
x=6±√4(r2-(y-5)2)2⋅1
Step 5.1.6.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=r and b=y-5.
x=6±√4((r+y-5)(r-(y-5)))2⋅1
Step 5.1.6.5
Simplify.
Step 5.1.6.5.1
Apply the distributive property.
x=6±√4((r+y-5)(r-y+5))2⋅1
Step 5.1.6.5.2
Multiply -1 by -5.
x=6±√4((r+y-5)(r-y+5))2⋅1
x=6±√4(r+y-5)(r-y+5)2⋅1
x=6±√4(r+y-5)(r-y+5)2⋅1
Step 5.1.7
Rewrite 4(r+y-5)(r-y+5) as 22((r+y-5)(r-y+5)).
Step 5.1.7.1
Rewrite 4 as 22.
x=6±√22(r+y-5)(r-y+5)2⋅1
Step 5.1.7.2
Add parentheses.
x=6±√22((r+y-5)(r-y+5))2⋅1
x=6±√22((r+y-5)(r-y+5))2⋅1
Step 5.1.8
Pull terms out from under the radical.
x=6±2√(r+y-5)(r-y+5)2⋅1
x=6±2√(r+y-5)(r-y+5)2⋅1
Step 5.2
Multiply 2 by 1.
x=6±2√(r+y-5)(r-y+5)2
Step 5.3
Simplify 6±2√(r+y-5)(r-y+5)2.
x=3±√(r+y-5)(r-y+5)
x=3±√(r+y-5)(r-y+5)
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Raise -6 to the power of 2.
x=6±√36-4⋅1⋅(y2-10y+34-r2)2⋅1
Step 6.1.2
Multiply -4 by 1.
x=6±√36-4⋅(y2-10y+34-r2)2⋅1
Step 6.1.3
Apply the distributive property.
x=6±√36-4y2-4(-10y)-4⋅34-4(-r2)2⋅1
Step 6.1.4
Simplify.
Step 6.1.4.1
Multiply -10 by -4.
x=6±√36-4y2+40y-4⋅34-4(-r2)2⋅1
Step 6.1.4.2
Multiply -4 by 34.
x=6±√36-4y2+40y-136-4(-r2)2⋅1
Step 6.1.4.3
Multiply -1 by -4.
x=6±√36-4y2+40y-136+4r22⋅1
x=6±√36-4y2+40y-136+4r22⋅1
Step 6.1.5
Subtract 136 from 36.
x=6±√-4y2+40y-100+4r22⋅1
Step 6.1.6
Rewrite -4y2+40y-100+4r2 in a factored form.
Step 6.1.6.1
Factor 4 out of -4y2+40y-100+4r2.
Step 6.1.6.1.1
Factor 4 out of -4y2.
x=6±√4(-y2)+40y-100+4r22⋅1
Step 6.1.6.1.2
Factor 4 out of 40y.
x=6±√4(-y2)+4(10y)-100+4r22⋅1
Step 6.1.6.1.3
Factor 4 out of -100.
x=6±√4(-y2)+4(10y)+4⋅-25+4r22⋅1
Step 6.1.6.1.4
Factor 4 out of 4(-y2)+4(10y).
x=6±√4(-y2+10y)+4⋅-25+4r22⋅1
Step 6.1.6.1.5
Factor 4 out of 4(-y2+10y)+4⋅-25.
x=6±√4(-y2+10y-25)+4r22⋅1
Step 6.1.6.1.6
Factor 4 out of 4(-y2+10y-25)+4r2.
x=6±√4(-y2+10y-25+r2)2⋅1
x=6±√4(-y2+10y-25+r2)2⋅1
Step 6.1.6.2
Rewrite y2-10y+25 as (y-5)2.
Step 6.1.6.2.1
Rewrite 25 as 52.
x=6±√4(-(y2-10y+52)+r2)2⋅1
Step 6.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
10y=2⋅y⋅5
Step 6.1.6.2.3
Rewrite the polynomial.
x=6±√4(-(y2-2⋅y⋅5+52)+r2)2⋅1
Step 6.1.6.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=y and b=5.
x=6±√4(-(y-5)2+r2)2⋅1
x=6±√4(-(y-5)2+r2)2⋅1
Step 6.1.6.3
Reorder -(y-5)2 and r2.
x=6±√4(r2-(y-5)2)2⋅1
Step 6.1.6.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=r and b=y-5.
x=6±√4((r+y-5)(r-(y-5)))2⋅1
Step 6.1.6.5
Simplify.
Step 6.1.6.5.1
Apply the distributive property.
x=6±√4((r+y-5)(r-y+5))2⋅1
Step 6.1.6.5.2
Multiply -1 by -5.
x=6±√4((r+y-5)(r-y+5))2⋅1
x=6±√4(r+y-5)(r-y+5)2⋅1
x=6±√4(r+y-5)(r-y+5)2⋅1
Step 6.1.7
Rewrite 4(r+y-5)(r-y+5) as 22((r+y-5)(r-y+5)).
Step 6.1.7.1
Rewrite 4 as 22.
x=6±√22(r+y-5)(r-y+5)2⋅1
Step 6.1.7.2
Add parentheses.
x=6±√22((r+y-5)(r-y+5))2⋅1
x=6±√22((r+y-5)(r-y+5))2⋅1
Step 6.1.8
Pull terms out from under the radical.
x=6±2√(r+y-5)(r-y+5)2⋅1
x=6±2√(r+y-5)(r-y+5)2⋅1
Step 6.2
Multiply 2 by 1.
x=6±2√(r+y-5)(r-y+5)2
Step 6.3
Simplify 6±2√(r+y-5)(r-y+5)2.
x=3±√(r+y-5)(r-y+5)
Step 6.4
Change the ± to +.
x=3+√(r+y-5)(r-y+5)
x=3+√(r+y-5)(r-y+5)
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Raise -6 to the power of 2.
x=6±√36-4⋅1⋅(y2-10y+34-r2)2⋅1
Step 7.1.2
Multiply -4 by 1.
x=6±√36-4⋅(y2-10y+34-r2)2⋅1
Step 7.1.3
Apply the distributive property.
x=6±√36-4y2-4(-10y)-4⋅34-4(-r2)2⋅1
Step 7.1.4
Simplify.
Step 7.1.4.1
Multiply -10 by -4.
x=6±√36-4y2+40y-4⋅34-4(-r2)2⋅1
Step 7.1.4.2
Multiply -4 by 34.
x=6±√36-4y2+40y-136-4(-r2)2⋅1
Step 7.1.4.3
Multiply -1 by -4.
x=6±√36-4y2+40y-136+4r22⋅1
x=6±√36-4y2+40y-136+4r22⋅1
Step 7.1.5
Subtract 136 from 36.
x=6±√-4y2+40y-100+4r22⋅1
Step 7.1.6
Rewrite -4y2+40y-100+4r2 in a factored form.
Step 7.1.6.1
Factor 4 out of -4y2+40y-100+4r2.
Step 7.1.6.1.1
Factor 4 out of -4y2.
x=6±√4(-y2)+40y-100+4r22⋅1
Step 7.1.6.1.2
Factor 4 out of 40y.
x=6±√4(-y2)+4(10y)-100+4r22⋅1
Step 7.1.6.1.3
Factor 4 out of -100.
x=6±√4(-y2)+4(10y)+4⋅-25+4r22⋅1
Step 7.1.6.1.4
Factor 4 out of 4(-y2)+4(10y).
x=6±√4(-y2+10y)+4⋅-25+4r22⋅1
Step 7.1.6.1.5
Factor 4 out of 4(-y2+10y)+4⋅-25.
x=6±√4(-y2+10y-25)+4r22⋅1
Step 7.1.6.1.6
Factor 4 out of 4(-y2+10y-25)+4r2.
x=6±√4(-y2+10y-25+r2)2⋅1
x=6±√4(-y2+10y-25+r2)2⋅1
Step 7.1.6.2
Rewrite y2-10y+25 as (y-5)2.
Step 7.1.6.2.1
Rewrite 25 as 52.
x=6±√4(-(y2-10y+52)+r2)2⋅1
Step 7.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
10y=2⋅y⋅5
Step 7.1.6.2.3
Rewrite the polynomial.
x=6±√4(-(y2-2⋅y⋅5+52)+r2)2⋅1
Step 7.1.6.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=y and b=5.
x=6±√4(-(y-5)2+r2)2⋅1
x=6±√4(-(y-5)2+r2)2⋅1
Step 7.1.6.3
Reorder -(y-5)2 and r2.
x=6±√4(r2-(y-5)2)2⋅1
Step 7.1.6.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=r and b=y-5.
x=6±√4((r+y-5)(r-(y-5)))2⋅1
Step 7.1.6.5
Simplify.
Step 7.1.6.5.1
Apply the distributive property.
x=6±√4((r+y-5)(r-y+5))2⋅1
Step 7.1.6.5.2
Multiply -1 by -5.
x=6±√4((r+y-5)(r-y+5))2⋅1
x=6±√4(r+y-5)(r-y+5)2⋅1
x=6±√4(r+y-5)(r-y+5)2⋅1
Step 7.1.7
Rewrite 4(r+y-5)(r-y+5) as 22((r+y-5)(r-y+5)).
Step 7.1.7.1
Rewrite 4 as 22.
x=6±√22(r+y-5)(r-y+5)2⋅1
Step 7.1.7.2
Add parentheses.
x=6±√22((r+y-5)(r-y+5))2⋅1
x=6±√22((r+y-5)(r-y+5))2⋅1
Step 7.1.8
Pull terms out from under the radical.
x=6±2√(r+y-5)(r-y+5)2⋅1
x=6±2√(r+y-5)(r-y+5)2⋅1
Step 7.2
Multiply 2 by 1.
x=6±2√(r+y-5)(r-y+5)2
Step 7.3
Simplify 6±2√(r+y-5)(r-y+5)2.
x=3±√(r+y-5)(r-y+5)
Step 7.4
Change the ± to -.
x=3-√(r+y-5)(r-y+5)
x=3-√(r+y-5)(r-y+5)
Step 8
The final answer is the combination of both solutions.
x=3+√(r+y-5)(r-y+5)
x=3-√(r+y-5)(r-y+5)