Finite Math Examples

Solve by Factoring (x-3)^2+(y-5)^2=r^2
(x-3)2+(y-5)2=r2(x3)2+(y5)2=r2
Step 1
Subtract r2r2 from both sides of the equation.
(x-3)2+(y-5)2-r2=0(x3)2+(y5)2r2=0
Step 2
Simplify (x-3)2+(y-5)2-r2(x3)2+(y5)2r2.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Rewrite (x-3)2(x3)2 as (x-3)(x-3)(x3)(x3).
(x-3)(x-3)+(y-5)2-r2=0(x3)(x3)+(y5)2r2=0
Step 2.1.2
Expand (x-3)(x-3)(x3)(x3) using the FOIL Method.
Tap for more steps...
Step 2.1.2.1
Apply the distributive property.
x(x-3)-3(x-3)+(y-5)2-r2=0x(x3)3(x3)+(y5)2r2=0
Step 2.1.2.2
Apply the distributive property.
xx+x-3-3(x-3)+(y-5)2-r2=0xx+x33(x3)+(y5)2r2=0
Step 2.1.2.3
Apply the distributive property.
xx+x-3-3x-3-3+(y-5)2-r2=0xx+x33x33+(y5)2r2=0
xx+x-3-3x-3-3+(y-5)2-r2=0xx+x33x33+(y5)2r2=0
Step 2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.3.1.1
Multiply xx by xx.
x2+x-3-3x-3-3+(y-5)2-r2=0x2+x33x33+(y5)2r2=0
Step 2.1.3.1.2
Move -33 to the left of xx.
x2-3x-3x-3-3+(y-5)2-r2=0x23x3x33+(y5)2r2=0
Step 2.1.3.1.3
Multiply -33 by -33.
x2-3x-3x+9+(y-5)2-r2=0x23x3x+9+(y5)2r2=0
x2-3x-3x+9+(y-5)2-r2=0x23x3x+9+(y5)2r2=0
Step 2.1.3.2
Subtract 3x3x from -3x3x.
x2-6x+9+(y-5)2-r2=0x26x+9+(y5)2r2=0
x2-6x+9+(y-5)2-r2=0x26x+9+(y5)2r2=0
Step 2.1.4
Rewrite (y-5)2(y5)2 as (y-5)(y-5)(y5)(y5).
x2-6x+9+(y-5)(y-5)-r2=0x26x+9+(y5)(y5)r2=0
Step 2.1.5
Expand (y-5)(y-5)(y5)(y5) using the FOIL Method.
Tap for more steps...
Step 2.1.5.1
Apply the distributive property.
x2-6x+9+y(y-5)-5(y-5)-r2=0x26x+9+y(y5)5(y5)r2=0
Step 2.1.5.2
Apply the distributive property.
x2-6x+9+yy+y-5-5(y-5)-r2=0x26x+9+yy+y55(y5)r2=0
Step 2.1.5.3
Apply the distributive property.
x2-6x+9+yy+y-5-5y-5-5-r2=0x26x+9+yy+y55y55r2=0
x2-6x+9+yy+y-5-5y-5-5-r2=0x26x+9+yy+y55y55r2=0
Step 2.1.6
Simplify and combine like terms.
Tap for more steps...
Step 2.1.6.1
Simplify each term.
Tap for more steps...
Step 2.1.6.1.1
Multiply yy by yy.
x2-6x+9+y2+y-5-5y-5-5-r2=0x26x+9+y2+y55y55r2=0
Step 2.1.6.1.2
Move -55 to the left of yy.
x2-6x+9+y2-5y-5y-5-5-r2=0x26x+9+y25y5y55r2=0
Step 2.1.6.1.3
Multiply -55 by -55.
x2-6x+9+y2-5y-5y+25-r2=0x26x+9+y25y5y+25r2=0
x2-6x+9+y2-5y-5y+25-r2=0x26x+9+y25y5y+25r2=0
Step 2.1.6.2
Subtract 5y5y from -5y5y.
x2-6x+9+y2-10y+25-r2=0x26x+9+y210y+25r2=0
x2-6x+9+y2-10y+25-r2=0x26x+9+y210y+25r2=0
x2-6x+9+y2-10y+25-r2=0x26x+9+y210y+25r2=0
Step 2.2
Add 99 and 2525.
x2-6x+y2-10y+34-r2=0x26x+y210y+34r2=0
x2-6x+y2-10y+34-r2=0x26x+y210y+34r2=0
Step 3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 4
Substitute the values a=1a=1, b=-6b=6, and c=y2-10y+34-r2c=y210y+34r2 into the quadratic formula and solve for xx.
6±(-6)2-4(1(y2-10y+34-r2))216±(6)24(1(y210y+34r2))21
Step 5
Simplify.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise -66 to the power of 22.
x=6±36-41(y2-10y+34-r2)21x=6±3641(y210y+34r2)21
Step 5.1.2
Multiply -44 by 11.
x=6±36-4(y2-10y+34-r2)21x=6±364(y210y+34r2)21
Step 5.1.3
Apply the distributive property.
x=6±36-4y2-4(-10y)-434-4(-r2)21x=6±364y24(10y)4344(r2)21
Step 5.1.4
Simplify.
Tap for more steps...
Step 5.1.4.1
Multiply -1010 by -44.
x=6±36-4y2+40y-434-4(-r2)21x=6±364y2+40y4344(r2)21
Step 5.1.4.2
Multiply -4 by 34.
x=6±36-4y2+40y-136-4(-r2)21
Step 5.1.4.3
Multiply -1 by -4.
x=6±36-4y2+40y-136+4r221
x=6±36-4y2+40y-136+4r221
Step 5.1.5
Subtract 136 from 36.
x=6±-4y2+40y-100+4r221
Step 5.1.6
Rewrite -4y2+40y-100+4r2 in a factored form.
Tap for more steps...
Step 5.1.6.1
Factor 4 out of -4y2+40y-100+4r2.
Tap for more steps...
Step 5.1.6.1.1
Factor 4 out of -4y2.
x=6±4(-y2)+40y-100+4r221
Step 5.1.6.1.2
Factor 4 out of 40y.
x=6±4(-y2)+4(10y)-100+4r221
Step 5.1.6.1.3
Factor 4 out of -100.
x=6±4(-y2)+4(10y)+4-25+4r221
Step 5.1.6.1.4
Factor 4 out of 4(-y2)+4(10y).
x=6±4(-y2+10y)+4-25+4r221
Step 5.1.6.1.5
Factor 4 out of 4(-y2+10y)+4-25.
x=6±4(-y2+10y-25)+4r221
Step 5.1.6.1.6
Factor 4 out of 4(-y2+10y-25)+4r2.
x=6±4(-y2+10y-25+r2)21
x=6±4(-y2+10y-25+r2)21
Step 5.1.6.2
Rewrite y2-10y+25 as (y-5)2.
Tap for more steps...
Step 5.1.6.2.1
Rewrite 25 as 52.
x=6±4(-(y2-10y+52)+r2)21
Step 5.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
10y=2y5
Step 5.1.6.2.3
Rewrite the polynomial.
x=6±4(-(y2-2y5+52)+r2)21
Step 5.1.6.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=y and b=5.
x=6±4(-(y-5)2+r2)21
x=6±4(-(y-5)2+r2)21
Step 5.1.6.3
Reorder -(y-5)2 and r2.
x=6±4(r2-(y-5)2)21
Step 5.1.6.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=r and b=y-5.
x=6±4((r+y-5)(r-(y-5)))21
Step 5.1.6.5
Simplify.
Tap for more steps...
Step 5.1.6.5.1
Apply the distributive property.
x=6±4((r+y-5)(r-y+5))21
Step 5.1.6.5.2
Multiply -1 by -5.
x=6±4((r+y-5)(r-y+5))21
x=6±4(r+y-5)(r-y+5)21
x=6±4(r+y-5)(r-y+5)21
Step 5.1.7
Rewrite 4(r+y-5)(r-y+5) as 22((r+y-5)(r-y+5)).
Tap for more steps...
Step 5.1.7.1
Rewrite 4 as 22.
x=6±22(r+y-5)(r-y+5)21
Step 5.1.7.2
Add parentheses.
x=6±22((r+y-5)(r-y+5))21
x=6±22((r+y-5)(r-y+5))21
Step 5.1.8
Pull terms out from under the radical.
x=6±2(r+y-5)(r-y+5)21
x=6±2(r+y-5)(r-y+5)21
Step 5.2
Multiply 2 by 1.
x=6±2(r+y-5)(r-y+5)2
Step 5.3
Simplify 6±2(r+y-5)(r-y+5)2.
x=3±(r+y-5)(r-y+5)
x=3±(r+y-5)(r-y+5)
Step 6
Simplify the expression to solve for the + portion of the ±.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Raise -6 to the power of 2.
x=6±36-41(y2-10y+34-r2)21
Step 6.1.2
Multiply -4 by 1.
x=6±36-4(y2-10y+34-r2)21
Step 6.1.3
Apply the distributive property.
x=6±36-4y2-4(-10y)-434-4(-r2)21
Step 6.1.4
Simplify.
Tap for more steps...
Step 6.1.4.1
Multiply -10 by -4.
x=6±36-4y2+40y-434-4(-r2)21
Step 6.1.4.2
Multiply -4 by 34.
x=6±36-4y2+40y-136-4(-r2)21
Step 6.1.4.3
Multiply -1 by -4.
x=6±36-4y2+40y-136+4r221
x=6±36-4y2+40y-136+4r221
Step 6.1.5
Subtract 136 from 36.
x=6±-4y2+40y-100+4r221
Step 6.1.6
Rewrite -4y2+40y-100+4r2 in a factored form.
Tap for more steps...
Step 6.1.6.1
Factor 4 out of -4y2+40y-100+4r2.
Tap for more steps...
Step 6.1.6.1.1
Factor 4 out of -4y2.
x=6±4(-y2)+40y-100+4r221
Step 6.1.6.1.2
Factor 4 out of 40y.
x=6±4(-y2)+4(10y)-100+4r221
Step 6.1.6.1.3
Factor 4 out of -100.
x=6±4(-y2)+4(10y)+4-25+4r221
Step 6.1.6.1.4
Factor 4 out of 4(-y2)+4(10y).
x=6±4(-y2+10y)+4-25+4r221
Step 6.1.6.1.5
Factor 4 out of 4(-y2+10y)+4-25.
x=6±4(-y2+10y-25)+4r221
Step 6.1.6.1.6
Factor 4 out of 4(-y2+10y-25)+4r2.
x=6±4(-y2+10y-25+r2)21
x=6±4(-y2+10y-25+r2)21
Step 6.1.6.2
Rewrite y2-10y+25 as (y-5)2.
Tap for more steps...
Step 6.1.6.2.1
Rewrite 25 as 52.
x=6±4(-(y2-10y+52)+r2)21
Step 6.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
10y=2y5
Step 6.1.6.2.3
Rewrite the polynomial.
x=6±4(-(y2-2y5+52)+r2)21
Step 6.1.6.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=y and b=5.
x=6±4(-(y-5)2+r2)21
x=6±4(-(y-5)2+r2)21
Step 6.1.6.3
Reorder -(y-5)2 and r2.
x=6±4(r2-(y-5)2)21
Step 6.1.6.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=r and b=y-5.
x=6±4((r+y-5)(r-(y-5)))21
Step 6.1.6.5
Simplify.
Tap for more steps...
Step 6.1.6.5.1
Apply the distributive property.
x=6±4((r+y-5)(r-y+5))21
Step 6.1.6.5.2
Multiply -1 by -5.
x=6±4((r+y-5)(r-y+5))21
x=6±4(r+y-5)(r-y+5)21
x=6±4(r+y-5)(r-y+5)21
Step 6.1.7
Rewrite 4(r+y-5)(r-y+5) as 22((r+y-5)(r-y+5)).
Tap for more steps...
Step 6.1.7.1
Rewrite 4 as 22.
x=6±22(r+y-5)(r-y+5)21
Step 6.1.7.2
Add parentheses.
x=6±22((r+y-5)(r-y+5))21
x=6±22((r+y-5)(r-y+5))21
Step 6.1.8
Pull terms out from under the radical.
x=6±2(r+y-5)(r-y+5)21
x=6±2(r+y-5)(r-y+5)21
Step 6.2
Multiply 2 by 1.
x=6±2(r+y-5)(r-y+5)2
Step 6.3
Simplify 6±2(r+y-5)(r-y+5)2.
x=3±(r+y-5)(r-y+5)
Step 6.4
Change the ± to +.
x=3+(r+y-5)(r-y+5)
x=3+(r+y-5)(r-y+5)
Step 7
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Raise -6 to the power of 2.
x=6±36-41(y2-10y+34-r2)21
Step 7.1.2
Multiply -4 by 1.
x=6±36-4(y2-10y+34-r2)21
Step 7.1.3
Apply the distributive property.
x=6±36-4y2-4(-10y)-434-4(-r2)21
Step 7.1.4
Simplify.
Tap for more steps...
Step 7.1.4.1
Multiply -10 by -4.
x=6±36-4y2+40y-434-4(-r2)21
Step 7.1.4.2
Multiply -4 by 34.
x=6±36-4y2+40y-136-4(-r2)21
Step 7.1.4.3
Multiply -1 by -4.
x=6±36-4y2+40y-136+4r221
x=6±36-4y2+40y-136+4r221
Step 7.1.5
Subtract 136 from 36.
x=6±-4y2+40y-100+4r221
Step 7.1.6
Rewrite -4y2+40y-100+4r2 in a factored form.
Tap for more steps...
Step 7.1.6.1
Factor 4 out of -4y2+40y-100+4r2.
Tap for more steps...
Step 7.1.6.1.1
Factor 4 out of -4y2.
x=6±4(-y2)+40y-100+4r221
Step 7.1.6.1.2
Factor 4 out of 40y.
x=6±4(-y2)+4(10y)-100+4r221
Step 7.1.6.1.3
Factor 4 out of -100.
x=6±4(-y2)+4(10y)+4-25+4r221
Step 7.1.6.1.4
Factor 4 out of 4(-y2)+4(10y).
x=6±4(-y2+10y)+4-25+4r221
Step 7.1.6.1.5
Factor 4 out of 4(-y2+10y)+4-25.
x=6±4(-y2+10y-25)+4r221
Step 7.1.6.1.6
Factor 4 out of 4(-y2+10y-25)+4r2.
x=6±4(-y2+10y-25+r2)21
x=6±4(-y2+10y-25+r2)21
Step 7.1.6.2
Rewrite y2-10y+25 as (y-5)2.
Tap for more steps...
Step 7.1.6.2.1
Rewrite 25 as 52.
x=6±4(-(y2-10y+52)+r2)21
Step 7.1.6.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
10y=2y5
Step 7.1.6.2.3
Rewrite the polynomial.
x=6±4(-(y2-2y5+52)+r2)21
Step 7.1.6.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=y and b=5.
x=6±4(-(y-5)2+r2)21
x=6±4(-(y-5)2+r2)21
Step 7.1.6.3
Reorder -(y-5)2 and r2.
x=6±4(r2-(y-5)2)21
Step 7.1.6.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=r and b=y-5.
x=6±4((r+y-5)(r-(y-5)))21
Step 7.1.6.5
Simplify.
Tap for more steps...
Step 7.1.6.5.1
Apply the distributive property.
x=6±4((r+y-5)(r-y+5))21
Step 7.1.6.5.2
Multiply -1 by -5.
x=6±4((r+y-5)(r-y+5))21
x=6±4(r+y-5)(r-y+5)21
x=6±4(r+y-5)(r-y+5)21
Step 7.1.7
Rewrite 4(r+y-5)(r-y+5) as 22((r+y-5)(r-y+5)).
Tap for more steps...
Step 7.1.7.1
Rewrite 4 as 22.
x=6±22(r+y-5)(r-y+5)21
Step 7.1.7.2
Add parentheses.
x=6±22((r+y-5)(r-y+5))21
x=6±22((r+y-5)(r-y+5))21
Step 7.1.8
Pull terms out from under the radical.
x=6±2(r+y-5)(r-y+5)21
x=6±2(r+y-5)(r-y+5)21
Step 7.2
Multiply 2 by 1.
x=6±2(r+y-5)(r-y+5)2
Step 7.3
Simplify 6±2(r+y-5)(r-y+5)2.
x=3±(r+y-5)(r-y+5)
Step 7.4
Change the ± to -.
x=3-(r+y-5)(r-y+5)
x=3-(r+y-5)(r-y+5)
Step 8
The final answer is the combination of both solutions.
x=3+(r+y-5)(r-y+5)
x=3-(r+y-5)(r-y+5)
 [x2  12  π  xdx ]