Finite Math Examples

Find the Roots (Zeros) 3x^2-9y+6=0
Step 1
Solve for .
Tap for more steps...
Step 1.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.2.3.1.1
Cancel the common factor of and .
Tap for more steps...
Step 1.2.3.1.1.1
Factor out of .
Step 1.2.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.1.1.2.1
Factor out of .
Step 1.2.3.1.1.2.2
Cancel the common factor.
Step 1.2.3.1.1.2.3
Rewrite the expression.
Step 1.2.3.1.2
Cancel the common factor of and .
Tap for more steps...
Step 1.2.3.1.2.1
Factor out of .
Step 1.2.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.1.2.2.1
Factor out of .
Step 1.2.3.1.2.2.2
Cancel the common factor.
Step 1.2.3.1.2.2.3
Rewrite the expression.
Step 2
Set equal to .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Tap for more steps...
Step 3.4.1
Rewrite as .
Step 3.4.2
Rewrite as .
Step 3.4.3
Rewrite as .
Step 3.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.5.1
First, use the positive value of the to find the first solution.
Step 3.5.2
Next, use the negative value of the to find the second solution.
Step 3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4