Enter a problem...
Finite Math Examples
f(x)=-2(x+1)2-2f(x)=−2(x+1)2−2
Step 1
Set -2(x+1)2-2−2(x+1)2−2 equal to 00.
-2(x+1)2-2=0−2(x+1)2−2=0
Step 2
Step 2.1
Simplify -2(x+1)2-2−2(x+1)2−2.
Step 2.1.1
Simplify each term.
Step 2.1.1.1
Rewrite (x+1)2(x+1)2 as (x+1)(x+1)(x+1)(x+1).
-2((x+1)(x+1))-2=0−2((x+1)(x+1))−2=0
Step 2.1.1.2
Expand (x+1)(x+1)(x+1)(x+1) using the FOIL Method.
Step 2.1.1.2.1
Apply the distributive property.
-2(x(x+1)+1(x+1))-2=0−2(x(x+1)+1(x+1))−2=0
Step 2.1.1.2.2
Apply the distributive property.
-2(x⋅x+x⋅1+1(x+1))-2=0−2(x⋅x+x⋅1+1(x+1))−2=0
Step 2.1.1.2.3
Apply the distributive property.
-2(x⋅x+x⋅1+1x+1⋅1)-2=0−2(x⋅x+x⋅1+1x+1⋅1)−2=0
-2(x⋅x+x⋅1+1x+1⋅1)-2=0−2(x⋅x+x⋅1+1x+1⋅1)−2=0
Step 2.1.1.3
Simplify and combine like terms.
Step 2.1.1.3.1
Simplify each term.
Step 2.1.1.3.1.1
Multiply xx by xx.
-2(x2+x⋅1+1x+1⋅1)-2=0−2(x2+x⋅1+1x+1⋅1)−2=0
Step 2.1.1.3.1.2
Multiply xx by 11.
-2(x2+x+1x+1⋅1)-2=0−2(x2+x+1x+1⋅1)−2=0
Step 2.1.1.3.1.3
Multiply xx by 11.
-2(x2+x+x+1⋅1)-2=0−2(x2+x+x+1⋅1)−2=0
Step 2.1.1.3.1.4
Multiply 11 by 11.
-2(x2+x+x+1)-2=0−2(x2+x+x+1)−2=0
-2(x2+x+x+1)-2=0−2(x2+x+x+1)−2=0
Step 2.1.1.3.2
Add xx and xx.
-2(x2+2x+1)-2=0−2(x2+2x+1)−2=0
-2(x2+2x+1)-2=0−2(x2+2x+1)−2=0
Step 2.1.1.4
Apply the distributive property.
-2x2-2(2x)-2⋅1-2=0−2x2−2(2x)−2⋅1−2=0
Step 2.1.1.5
Simplify.
Step 2.1.1.5.1
Multiply 22 by -2−2.
-2x2-4x-2⋅1-2=0−2x2−4x−2⋅1−2=0
Step 2.1.1.5.2
Multiply -2−2 by 11.
-2x2-4x-2-2=0−2x2−4x−2−2=0
-2x2-4x-2-2=0−2x2−4x−2−2=0
-2x2-4x-2-2=0−2x2−4x−2−2=0
Step 2.1.2
Subtract 22 from -2−2.
-2x2-4x-4=0−2x2−4x−4=0
-2x2-4x-4=0−2x2−4x−4=0
Step 2.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
No solution
No solution