Finite Math Examples

Find the Roots (Zeros) f(x)=-2(x+1)^2-2
f(x)=-2(x+1)2-2f(x)=2(x+1)22
Step 1
Set -2(x+1)2-22(x+1)22 equal to 00.
-2(x+1)2-2=02(x+1)22=0
Step 2
Solve for xx.
Tap for more steps...
Step 2.1
Simplify -2(x+1)2-22(x+1)22.
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Rewrite (x+1)2(x+1)2 as (x+1)(x+1)(x+1)(x+1).
-2((x+1)(x+1))-2=02((x+1)(x+1))2=0
Step 2.1.1.2
Expand (x+1)(x+1)(x+1)(x+1) using the FOIL Method.
Tap for more steps...
Step 2.1.1.2.1
Apply the distributive property.
-2(x(x+1)+1(x+1))-2=02(x(x+1)+1(x+1))2=0
Step 2.1.1.2.2
Apply the distributive property.
-2(xx+x1+1(x+1))-2=02(xx+x1+1(x+1))2=0
Step 2.1.1.2.3
Apply the distributive property.
-2(xx+x1+1x+11)-2=02(xx+x1+1x+11)2=0
-2(xx+x1+1x+11)-2=02(xx+x1+1x+11)2=0
Step 2.1.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.1.3.1.1
Multiply xx by xx.
-2(x2+x1+1x+11)-2=02(x2+x1+1x+11)2=0
Step 2.1.1.3.1.2
Multiply xx by 11.
-2(x2+x+1x+11)-2=02(x2+x+1x+11)2=0
Step 2.1.1.3.1.3
Multiply xx by 11.
-2(x2+x+x+11)-2=02(x2+x+x+11)2=0
Step 2.1.1.3.1.4
Multiply 11 by 11.
-2(x2+x+x+1)-2=02(x2+x+x+1)2=0
-2(x2+x+x+1)-2=02(x2+x+x+1)2=0
Step 2.1.1.3.2
Add xx and xx.
-2(x2+2x+1)-2=02(x2+2x+1)2=0
-2(x2+2x+1)-2=02(x2+2x+1)2=0
Step 2.1.1.4
Apply the distributive property.
-2x2-2(2x)-21-2=02x22(2x)212=0
Step 2.1.1.5
Simplify.
Tap for more steps...
Step 2.1.1.5.1
Multiply 22 by -22.
-2x2-4x-21-2=02x24x212=0
Step 2.1.1.5.2
Multiply -22 by 11.
-2x2-4x-2-2=02x24x22=0
-2x2-4x-2-2=02x24x22=0
-2x2-4x-2-2=02x24x22=0
Step 2.1.2
Subtract 22 from -22.
-2x2-4x-4=02x24x4=0
-2x2-4x-4=02x24x4=0
Step 2.2
Graph each side of the equation. The solution is the x-value of the point of intersection.
No solution
No solution
 [x2  12  π  xdx ]  x2  12  π  xdx