Enter a problem...
Finite Math Examples
16x2+25=40x16x2+25=40x
Step 1
Step 1.1
Subtract 2525 from both sides of the equation.
16x2=40x-2516x2=40x−25
Step 1.2
Subtract 40x40x from both sides of the equation.
16x2-40x=-2516x2−40x=−25
16x2-40x=-2516x2−40x=−25
Step 2
Step 2.1
Divide each term in 16x2-40x=-2516x2−40x=−25 by 1616.
16x216+-40x16=-251616x216+−40x16=−2516
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Cancel the common factor of 1616.
Step 2.2.1.1.1
Cancel the common factor.
16x216+-40x16=-251616x216+−40x16=−2516
Step 2.2.1.1.2
Divide x2x2 by 11.
x2+-40x16=-2516x2+−40x16=−2516
x2+-40x16=-2516x2+−40x16=−2516
Step 2.2.1.2
Cancel the common factor of -40−40 and 1616.
Step 2.2.1.2.1
Factor 88 out of -40x−40x.
x2+8(-5x)16=-2516x2+8(−5x)16=−2516
Step 2.2.1.2.2
Cancel the common factors.
Step 2.2.1.2.2.1
Factor 88 out of 1616.
x2+8(-5x)8(2)=-2516x2+8(−5x)8(2)=−2516
Step 2.2.1.2.2.2
Cancel the common factor.
x2+8(-5x)8⋅2=-2516x2+8(−5x)8⋅2=−2516
Step 2.2.1.2.2.3
Rewrite the expression.
x2+-5x2=-2516x2+−5x2=−2516
x2+-5x2=-2516x2+−5x2=−2516
x2+-5x2=-2516x2+−5x2=−2516
Step 2.2.1.3
Move the negative in front of the fraction.
x2-5x2=-2516x2−5x2=−2516
x2-5x2=-2516x2−5x2=−2516
x2-5x2=-2516x2−5x2=−2516
Step 2.3
Simplify the right side.
Step 2.3.1
Move the negative in front of the fraction.
x2-5x2=-2516x2−5x2=−2516
x2-5x2=-2516x2−5x2=−2516
x2-5x2=-2516x2−5x2=−2516
Step 3
To create a trinomial square on the left side of the equation, find a value that is equal to the square of half of bb.
(b2)2=(-54)2(b2)2=(−54)2
Step 4
Add the term to each side of the equation.
x2-5x2+(-54)2=-2516+(-54)2x2−5x2+(−54)2=−2516+(−54)2
Step 5
Step 5.1
Simplify the left side.
Step 5.1.1
Simplify each term.
Step 5.1.1.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 5.1.1.1.1
Apply the product rule to -54−54.
x2-5x2+(-1)2(54)2=-2516+(-54)2x2−5x2+(−1)2(54)2=−2516+(−54)2
Step 5.1.1.1.2
Apply the product rule to 5454.
x2-5x2+(-1)25242=-2516+(-54)2x2−5x2+(−1)25242=−2516+(−54)2
x2-5x2+(-1)25242=-2516+(-54)2x2−5x2+(−1)25242=−2516+(−54)2
Step 5.1.1.2
Raise -1−1 to the power of 22.
x2-5x2+15242=-2516+(-54)2x2−5x2+15242=−2516+(−54)2
Step 5.1.1.3
Multiply 52425242 by 11.
x2-5x2+5242=-2516+(-54)2x2−5x2+5242=−2516+(−54)2
Step 5.1.1.4
Raise 55 to the power of 22.
x2-5x2+2542=-2516+(-54)2x2−5x2+2542=−2516+(−54)2
Step 5.1.1.5
Raise 44 to the power of 22.
x2-5x2+2516=-2516+(-54)2x2−5x2+2516=−2516+(−54)2
x2-5x2+2516=-2516+(-54)2x2−5x2+2516=−2516+(−54)2
x2-5x2+2516=-2516+(-54)2x2−5x2+2516=−2516+(−54)2
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify -2516+(-54)2−2516+(−54)2.
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 5.2.1.1.1.1
Apply the product rule to -54−54.
x2-5x2+2516=-2516+(-1)2(54)2x2−5x2+2516=−2516+(−1)2(54)2
Step 5.2.1.1.1.2
Apply the product rule to 5454.
x2-5x2+2516=-2516+(-1)25242x2−5x2+2516=−2516+(−1)25242
x2-5x2+2516=-2516+(-1)25242x2−5x2+2516=−2516+(−1)25242
Step 5.2.1.1.2
Raise -1−1 to the power of 22.
x2-5x2+2516=-2516+15242x2−5x2+2516=−2516+15242
Step 5.2.1.1.3
Multiply 52425242 by 11.
x2-5x2+2516=-2516+5242x2−5x2+2516=−2516+5242
Step 5.2.1.1.4
Raise 55 to the power of 22.
x2-5x2+2516=-2516+2542x2−5x2+2516=−2516+2542
Step 5.2.1.1.5
Raise 44 to the power of 22.
x2-5x2+2516=-2516+2516x2−5x2+2516=−2516+2516
x2-5x2+2516=-2516+2516x2−5x2+2516=−2516+2516
Step 5.2.1.2
Combine fractions.
Step 5.2.1.2.1
Combine the numerators over the common denominator.
x2-5x2+2516=-25+2516x2−5x2+2516=−25+2516
Step 5.2.1.2.2
Simplify the expression.
Step 5.2.1.2.2.1
Add -25−25 and 2525.
x2-5x2+2516=016x2−5x2+2516=016
Step 5.2.1.2.2.2
Divide 00 by 1616.
x2-5x2+2516=0x2−5x2+2516=0
x2-5x2+2516=0x2−5x2+2516=0
x2-5x2+2516=0x2−5x2+2516=0
x2-5x2+2516=0x2−5x2+2516=0
x2-5x2+2516=0x2−5x2+2516=0
x2-5x2+2516=0x2−5x2+2516=0
Step 6
Factor the perfect trinomial square into (x-54)2(x−54)2.
(x-54)2=0(x−54)2=0
Step 7
Step 7.1
Set the x-54x−54 equal to 00.
x-54=0x−54=0
Step 7.2
Add 5454 to both sides of the equation.
x=54x=54
x=54x=54