Enter a problem...
Finite Math Examples
y=−12x2−12x+32
Step 1
Set −12x2−12x+32 equal to 0.
−12x2−12x+32=0
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Combine x2 and 12.
−x22−12x+32=0
Step 2.1.2
Combine x and 12.
−x22−x2+32=0
−x22−x2+32=0
Step 2.2
Multiply through by the least common denominator 2, then simplify.
Step 2.2.1
Apply the distributive property.
2(−x22)+2(−x2)+2(32)=0
Step 2.2.2
Simplify.
Step 2.2.2.1
Cancel the common factor of 2.
Step 2.2.2.1.1
Move the leading negative in −x22 into the numerator.
2(−x22)+2(−x2)+2(32)=0
Step 2.2.2.1.2
Cancel the common factor.
2(−x22)+2(−x2)+2(32)=0
Step 2.2.2.1.3
Rewrite the expression.
−x2+2(−x2)+2(32)=0
−x2+2(−x2)+2(32)=0
Step 2.2.2.2
Cancel the common factor of 2.
Step 2.2.2.2.1
Move the leading negative in −x2 into the numerator.
−x2+2(−x2)+2(32)=0
Step 2.2.2.2.2
Cancel the common factor.
−x2+2(−x2)+2(32)=0
Step 2.2.2.2.3
Rewrite the expression.
−x2−x+2(32)=0
−x2−x+2(32)=0
Step 2.2.2.3
Cancel the common factor of 2.
Step 2.2.2.3.1
Cancel the common factor.
−x2−x+2(32)=0
Step 2.2.2.3.2
Rewrite the expression.
−x2−x+3=0
−x2−x+3=0
−x2−x+3=0
−x2−x+3=0
Step 2.3
Use the quadratic formula to find the solutions.
−b±√b2−4(ac)2a
Step 2.4
Substitute the values a=−1, b=−1, and c=3 into the quadratic formula and solve for x.
1±√(−1)2−4⋅(−1⋅3)2⋅−1
Step 2.5
Simplify.
Step 2.5.1
Simplify the numerator.
Step 2.5.1.1
Raise −1 to the power of 2.
x=1±√1−4⋅−1⋅32⋅−1
Step 2.5.1.2
Multiply −4⋅−1⋅3.
Step 2.5.1.2.1
Multiply −4 by −1.
x=1±√1+4⋅32⋅−1
Step 2.5.1.2.2
Multiply 4 by 3.
x=1±√1+122⋅−1
x=1±√1+122⋅−1
Step 2.5.1.3
Add 1 and 12.
x=1±√132⋅−1
x=1±√132⋅−1
Step 2.5.2
Multiply 2 by −1.
x=1±√13−2
Step 2.5.3
Move the negative in front of the fraction.
x=−1±√132
x=−1±√132
Step 2.6
The final answer is the combination of both solutions.
x=−1+√132,−1−√132
x=−1±√132
Step 3
The result can be shown in multiple forms.
Exact Form:
x=−1±√132
Decimal Form:
x=−2.30277563…,1.30277563…
Step 4