Finite Math Examples

Find the Roots (Zeros) y=-1/2x^2-1/2x+3/2
y=12x212x+32
Step 1
Set 12x212x+32 equal to 0.
12x212x+32=0
Step 2
Solve for x.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Combine x2 and 12.
x2212x+32=0
Step 2.1.2
Combine x and 12.
x22x2+32=0
x22x2+32=0
Step 2.2
Multiply through by the least common denominator 2, then simplify.
Tap for more steps...
Step 2.2.1
Apply the distributive property.
2(x22)+2(x2)+2(32)=0
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.2.1.1
Move the leading negative in x22 into the numerator.
2(x22)+2(x2)+2(32)=0
Step 2.2.2.1.2
Cancel the common factor.
2(x22)+2(x2)+2(32)=0
Step 2.2.2.1.3
Rewrite the expression.
x2+2(x2)+2(32)=0
x2+2(x2)+2(32)=0
Step 2.2.2.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.2.2.1
Move the leading negative in x2 into the numerator.
x2+2(x2)+2(32)=0
Step 2.2.2.2.2
Cancel the common factor.
x2+2(x2)+2(32)=0
Step 2.2.2.2.3
Rewrite the expression.
x2x+2(32)=0
x2x+2(32)=0
Step 2.2.2.3
Cancel the common factor of 2.
Tap for more steps...
Step 2.2.2.3.1
Cancel the common factor.
x2x+2(32)=0
Step 2.2.2.3.2
Rewrite the expression.
x2x+3=0
x2x+3=0
x2x+3=0
x2x+3=0
Step 2.3
Use the quadratic formula to find the solutions.
b±b24(ac)2a
Step 2.4
Substitute the values a=1, b=1, and c=3 into the quadratic formula and solve for x.
1±(1)24(13)21
Step 2.5
Simplify.
Tap for more steps...
Step 2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.5.1.1
Raise 1 to the power of 2.
x=1±141321
Step 2.5.1.2
Multiply 413.
Tap for more steps...
Step 2.5.1.2.1
Multiply 4 by 1.
x=1±1+4321
Step 2.5.1.2.2
Multiply 4 by 3.
x=1±1+1221
x=1±1+1221
Step 2.5.1.3
Add 1 and 12.
x=1±1321
x=1±1321
Step 2.5.2
Multiply 2 by 1.
x=1±132
Step 2.5.3
Move the negative in front of the fraction.
x=1±132
x=1±132
Step 2.6
The final answer is the combination of both solutions.
x=1+132,1132
x=1±132
Step 3
The result can be shown in multiple forms.
Exact Form:
x=1±132
Decimal Form:
x=2.30277563,1.30277563
Step 4
 x2  12  π  xdx