Enter a problem...
Finite Math Examples
7x23-252=07x23−252=0
Step 1
Add 252252 to both sides of the equation.
7x23=2527x23=252
Step 2
Raise each side of the equation to the power of 3232 to eliminate the fractional exponent on the left side.
(7x23)32=±25232(7x23)32=±25232
Step 3
Step 3.1
Simplify (7x23)32(7x23)32.
Step 3.1.1
Apply the product rule to 7x237x23.
732(x23)32=±25232732(x23)32=±25232
Step 3.1.2
Multiply the exponents in (x23)32(x23)32.
Step 3.1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
732x23⋅32=±25232732x23⋅32=±25232
Step 3.1.2.2
Cancel the common factor of 22.
Step 3.1.2.2.1
Cancel the common factor.
732x23⋅32=±25232
Step 3.1.2.2.2
Rewrite the expression.
732x13⋅3=±25232
732x13⋅3=±25232
Step 3.1.2.3
Cancel the common factor of 3.
Step 3.1.2.3.1
Cancel the common factor.
732x13⋅3=±25232
Step 3.1.2.3.2
Rewrite the expression.
732x1=±25232
732x1=±25232
732x1=±25232
Step 3.1.3
Simplify.
732x=±25232
Step 3.1.4
Reorder factors in 732x.
x⋅732=±25232
x⋅732=±25232
x⋅732=±25232
Step 4
Step 4.1
First, use the positive value of the ± to find the first solution.
x⋅732=25232
Step 4.2
Divide each term in x⋅732=25232 by 732 and simplify.
Step 4.2.1
Divide each term in x⋅732=25232 by 732.
x⋅732732=25232732
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor.
x⋅732732=25232732
Step 4.2.2.2
Divide x by 1.
x=25232732
x=25232732
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Use the power of quotient rule ambm=(ab)m.
x=(2527)32
Step 4.2.3.2
Simplify the expression.
Step 4.2.3.2.1
Divide 252 by 7.
x=3632
Step 4.2.3.2.2
Rewrite 36 as 62.
x=(62)32
Step 4.2.3.2.3
Apply the power rule and multiply exponents, (am)n=amn.
x=62(32)
x=62(32)
Step 4.2.3.3
Cancel the common factor of 2.
Step 4.2.3.3.1
Cancel the common factor.
x=62(32)
Step 4.2.3.3.2
Rewrite the expression.
x=63
x=63
Step 4.2.3.4
Raise 6 to the power of 3.
x=216
x=216
x=216
Step 4.3
Next, use the negative value of the ± to find the second solution.
x⋅732=-25232
Step 4.4
Divide each term in x⋅732=-25232 by 732 and simplify.
Step 4.4.1
Divide each term in x⋅732=-25232 by 732.
x⋅732732=-25232732
Step 4.4.2
Simplify the left side.
Step 4.4.2.1
Cancel the common factor.
x⋅732732=-25232732
Step 4.4.2.2
Divide x by 1.
x=-25232732
x=-25232732
Step 4.4.3
Simplify the right side.
Step 4.4.3.1
Move the negative in front of the fraction.
x=-25232732
Step 4.4.3.2
Use the power of quotient rule ambm=(ab)m.
x=-(2527)32
Step 4.4.3.3
Simplify the expression.
Step 4.4.3.3.1
Divide 252 by 7.
x=-3632
Step 4.4.3.3.2
Rewrite 36 as 62.
x=-(62)32
Step 4.4.3.3.3
Apply the power rule and multiply exponents, (am)n=amn.
x=-62(32)
x=-62(32)
Step 4.4.3.4
Cancel the common factor of 2.
Step 4.4.3.4.1
Cancel the common factor.
x=-62(32)
Step 4.4.3.4.2
Rewrite the expression.
x=-63
x=-63
Step 4.4.3.5
Simplify the expression.
Step 4.4.3.5.1
Raise 6 to the power of 3.
x=-1⋅216
Step 4.4.3.5.2
Multiply -1 by 216.
x=-216
x=-216
x=-216
x=-216
Step 4.5
The complete solution is the result of both the positive and negative portions of the solution.
x=216,-216
x=216,-216
Step 5