Finite Math Examples

Find the Roots (Zeros) f(x)=-1/((x-1)^2)-1/((x-1)^2)*e^(1/(x-1))
f(x)=-1(x-1)2-1(x-1)2e1x-1f(x)=1(x1)21(x1)2e1x1
Step 1
Set -1(x-1)2-1(x-1)2e1x-11(x1)21(x1)2e1x1 equal to 00.
-1(x-1)2-1(x-1)2e1x-1=01(x1)21(x1)2e1x1=0
Step 2
Solve for xx.
Tap for more steps...
Step 2.1
Simplify -1(x-1)2-1(x-1)2e1x-11(x1)21(x1)2e1x1.
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Move the negative in front of the fraction.
-1(x-1)2-1(x-1)2e1x-1=01(x1)21(x1)2e1x1=0
Step 2.1.1.2
Combine e1x-1e1x1 and 1(x-1)21(x1)2.
-1(x-1)2-e1x-1(x-1)2=01(x1)2e1x1(x1)2=0
-1(x-1)2-e1x-1(x-1)2=01(x1)2e1x1(x1)2=0
Step 2.1.2
Simplify terms.
Tap for more steps...
Step 2.1.2.1
Combine the numerators over the common denominator.
-1-e1x-1(x-1)2=01e1x1(x1)2=0
Step 2.1.2.2
Rewrite -11 as -1(1)1(1).
-1(1)-e1x-1(x-1)2=01(1)e1x1(x1)2=0
Step 2.1.2.3
Factor -11 out of -e1x-1e1x1.
-1(1)-(e1x-1)(x-1)2=01(1)(e1x1)(x1)2=0
Step 2.1.2.4
Factor -1 out of -1(1)-(e1x-1).
-1(1+e1x-1)(x-1)2=0
Step 2.1.2.5
Move the negative in front of the fraction.
-1+e1x-1(x-1)2=0
-1+e1x-1(x-1)2=0
-1+e1x-1(x-1)2=0
Step 2.2
Set the numerator equal to zero.
1+e1x-1=0
Step 2.3
Solve the equation for x.
Tap for more steps...
Step 2.3.1
Subtract 1 from both sides of the equation.
e1x-1=-1
Step 2.3.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e1x-1)=ln(-1)
Step 2.3.3
The equation cannot be solved because ln(-1) is undefined.
Undefined
Step 2.3.4
There is no solution for e1x-1=-1
No solution
No solution
No solution
 [x2  12  π  xdx ]