Enter a problem...
Finite Math Examples
f(x)=-1(x-1)2-1(x-1)2⋅e1x-1f(x)=−1(x−1)2−1(x−1)2⋅e1x−1
Step 1
Set -1(x-1)2-1(x-1)2⋅e1x-1−1(x−1)2−1(x−1)2⋅e1x−1 equal to 00.
-1(x-1)2-1(x-1)2⋅e1x-1=0−1(x−1)2−1(x−1)2⋅e1x−1=0
Step 2
Step 2.1
Simplify -1(x-1)2-1(x-1)2⋅e1x-1−1(x−1)2−1(x−1)2⋅e1x−1.
Step 2.1.1
Simplify each term.
Step 2.1.1.1
Move the negative in front of the fraction.
-1(x-1)2-1(x-1)2⋅e1x-1=0−1(x−1)2−1(x−1)2⋅e1x−1=0
Step 2.1.1.2
Combine e1x-1e1x−1 and 1(x-1)21(x−1)2.
-1(x-1)2-e1x-1(x-1)2=0−1(x−1)2−e1x−1(x−1)2=0
-1(x-1)2-e1x-1(x-1)2=0−1(x−1)2−e1x−1(x−1)2=0
Step 2.1.2
Simplify terms.
Step 2.1.2.1
Combine the numerators over the common denominator.
-1-e1x-1(x-1)2=0−1−e1x−1(x−1)2=0
Step 2.1.2.2
Rewrite -1−1 as -1(1)−1(1).
-1(1)-e1x-1(x-1)2=0−1(1)−e1x−1(x−1)2=0
Step 2.1.2.3
Factor -1−1 out of -e1x-1−e1x−1.
-1(1)-(e1x-1)(x-1)2=0−1(1)−(e1x−1)(x−1)2=0
Step 2.1.2.4
Factor -1 out of -1(1)-(e1x-1).
-1(1+e1x-1)(x-1)2=0
Step 2.1.2.5
Move the negative in front of the fraction.
-1+e1x-1(x-1)2=0
-1+e1x-1(x-1)2=0
-1+e1x-1(x-1)2=0
Step 2.2
Set the numerator equal to zero.
1+e1x-1=0
Step 2.3
Solve the equation for x.
Step 2.3.1
Subtract 1 from both sides of the equation.
e1x-1=-1
Step 2.3.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e1x-1)=ln(-1)
Step 2.3.3
The equation cannot be solved because ln(-1) is undefined.
Undefined
Step 2.3.4
There is no solution for e1x-1=-1
No solution
No solution
No solution