Finite Math Examples

Find the Roots (Zeros) (-x^2)/((1+4x)^2)=5/4
-x2(1+4x)2=54
Step 1
Move the negative in front of the fraction.
-x2(1+4x)2=54
Step 2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(1+4x)2,4
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.4
4 has factors of 2 and 2.
22
Step 2.5
Multiply 2 by 2.
4
Step 2.6
The factors for 1+4x are (1+4x)(1+4x), which is 1+4x multiplied by itself 2 times.
(1+4x)=(1+4x)(1+4x)
(1+4x) occurs 2 times.
Step 2.7
The LCM of (1+4x)2 is the result of multiplying all factors the greatest number of times they occur in either term.
(1+4x)2
Step 2.8
The Least Common Multiple LCM of some numbers is the smallest number that the numbers are factors of.
4(1+4x)2
4(1+4x)2
Step 3
Multiply each term in -x2(1+4x)2=54 by 4(1+4x)2 to eliminate the fractions.
Tap for more steps...
Step 3.1
Multiply each term in -x2(1+4x)2=54 by 4(1+4x)2.
-x2(1+4x)2(4(1+4x)2)=54(4(1+4x)2)
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of (1+4x)2.
Tap for more steps...
Step 3.2.1.1
Move the leading negative in -x2(1+4x)2 into the numerator.
-x2(1+4x)2(4(1+4x)2)=54(4(1+4x)2)
Step 3.2.1.2
Factor (1+4x)2 out of 4(1+4x)2.
-x2(1+4x)2((1+4x)24)=54(4(1+4x)2)
Step 3.2.1.3
Cancel the common factor.
-x2(1+4x)2((1+4x)24)=54(4(1+4x)2)
Step 3.2.1.4
Rewrite the expression.
-x24=54(4(1+4x)2)
-x24=54(4(1+4x)2)
Step 3.2.2
Multiply 4 by -1.
-4x2=54(4(1+4x)2)
-4x2=54(4(1+4x)2)
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Cancel the common factor of 4.
Tap for more steps...
Step 3.3.1.1
Factor 4 out of 4(1+4x)2.
-4x2=54(4((1+4x)2))
Step 3.3.1.2
Cancel the common factor.
-4x2=54(4(1+4x)2)
Step 3.3.1.3
Rewrite the expression.
-4x2=5(1+4x)2
-4x2=5(1+4x)2
-4x2=5(1+4x)2
-4x2=5(1+4x)2
Step 4
Solve the equation.
Tap for more steps...
Step 4.1
Simplify 5(1+4x)2.
Tap for more steps...
Step 4.1.1
Rewrite (1+4x)2 as (1+4x)(1+4x).
-4x2=5((1+4x)(1+4x))
Step 4.1.2
Expand (1+4x)(1+4x) using the FOIL Method.
Tap for more steps...
Step 4.1.2.1
Apply the distributive property.
-4x2=5(1(1+4x)+4x(1+4x))
Step 4.1.2.2
Apply the distributive property.
-4x2=5(11+1(4x)+4x(1+4x))
Step 4.1.2.3
Apply the distributive property.
-4x2=5(11+1(4x)+4x1+4x(4x))
-4x2=5(11+1(4x)+4x1+4x(4x))
Step 4.1.3
Simplify and combine like terms.
Tap for more steps...
Step 4.1.3.1
Simplify each term.
Tap for more steps...
Step 4.1.3.1.1
Multiply 1 by 1.
-4x2=5(1+1(4x)+4x1+4x(4x))
Step 4.1.3.1.2
Multiply 4x by 1.
-4x2=5(1+4x+4x1+4x(4x))
Step 4.1.3.1.3
Multiply 4 by 1.
-4x2=5(1+4x+4x+4x(4x))
Step 4.1.3.1.4
Rewrite using the commutative property of multiplication.
-4x2=5(1+4x+4x+44xx)
Step 4.1.3.1.5
Multiply x by x by adding the exponents.
Tap for more steps...
Step 4.1.3.1.5.1
Move x.
-4x2=5(1+4x+4x+44(xx))
Step 4.1.3.1.5.2
Multiply x by x.
-4x2=5(1+4x+4x+44x2)
-4x2=5(1+4x+4x+44x2)
Step 4.1.3.1.6
Multiply 4 by 4.
-4x2=5(1+4x+4x+16x2)
-4x2=5(1+4x+4x+16x2)
Step 4.1.3.2
Add 4x and 4x.
-4x2=5(1+8x+16x2)
-4x2=5(1+8x+16x2)
Step 4.1.4
Apply the distributive property.
-4x2=51+5(8x)+5(16x2)
Step 4.1.5
Simplify.
Tap for more steps...
Step 4.1.5.1
Multiply 5 by 1.
-4x2=5+5(8x)+5(16x2)
Step 4.1.5.2
Multiply 8 by 5.
-4x2=5+40x+5(16x2)
Step 4.1.5.3
Multiply 16 by 5.
-4x2=5+40x+80x2
-4x2=5+40x+80x2
-4x2=5+40x+80x2
Step 4.2
Since x is on the right side of the equation, switch the sides so it is on the left side of the equation.
5+40x+80x2=-4x2
Step 4.3
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 4.3.1
Add 4x2 to both sides of the equation.
5+40x+80x2+4x2=0
Step 4.3.2
Add 80x2 and 4x2.
5+40x+84x2=0
5+40x+84x2=0
Step 4.4
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4.5
Substitute the values a=84, b=40, and c=5 into the quadratic formula and solve for x.
-40±402-4(845)284
Step 4.6
Simplify.
Tap for more steps...
Step 4.6.1
Simplify the numerator.
Tap for more steps...
Step 4.6.1.1
Raise 40 to the power of 2.
x=-40±1600-4845284
Step 4.6.1.2
Multiply -4845.
Tap for more steps...
Step 4.6.1.2.1
Multiply -4 by 84.
x=-40±1600-3365284
Step 4.6.1.2.2
Multiply -336 by 5.
x=-40±1600-1680284
x=-40±1600-1680284
Step 4.6.1.3
Subtract 1680 from 1600.
x=-40±-80284
Step 4.6.1.4
Rewrite -80 as -1(80).
x=-40±-180284
Step 4.6.1.5
Rewrite -1(80) as -180.
x=-40±-180284
Step 4.6.1.6
Rewrite -1 as i.
x=-40±i80284
Step 4.6.1.7
Rewrite 80 as 425.
Tap for more steps...
Step 4.6.1.7.1
Factor 16 out of 80.
x=-40±i16(5)284
Step 4.6.1.7.2
Rewrite 16 as 42.
x=-40±i425284
x=-40±i425284
Step 4.6.1.8
Pull terms out from under the radical.
x=-40±i(45)284
Step 4.6.1.9
Move 4 to the left of i.
x=-40±4i5284
x=-40±4i5284
Step 4.6.2
Multiply 2 by 84.
x=-40±4i5168
Step 4.6.3
Simplify -40±4i5168.
x=-10±i542
x=-10±i542
Step 4.7
The final answer is the combination of both solutions.
x=-10-i542,-10+i542
x=-10±i542
Step 5
 [x2  12  π  xdx ]