Finite Math Examples

Find the Roots (Zeros) ((-x-1+4i)/(1+2i-ix))i(2-i)+1=4i-x(1-(-x-1+4i)/(1+2i-ix)i)
(-x-1+4i1+2i-ix)i(2-i)+1=4i-x(1--x-1+4i1+2i-ixi)(x1+4i1+2iix)i(2i)+1=4ix(1x1+4i1+2iixi)
Step 1
Since x is on the right side of the equation, switch the sides so it is on the left side of the equation.
4i-x(1--x-1+4i1+2i-ixi)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2
Simplify 4i-x(1--x-1+4i1+2i-ixi).
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Simplify each term.
Tap for more steps...
Step 2.1.1.1
Reorder terms.
4i-x(1--x-1+4i-ix+1+2ii)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.2
Combine i and -x-1+4i-ix+1+2i.
4i-x(1-i(-x-1+4i)-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.3
Apply the distributive property.
4i-x(1-i(-x)+i-1+i(4i)-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.4
Simplify.
Tap for more steps...
Step 2.1.1.4.1
Move -1 to the left of i.
4i-x(1-i(-x)-1i+i(4i)-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.4.2
Multiply i(4i).
Tap for more steps...
Step 2.1.1.4.2.1
Raise i to the power of 1.
4i-x(1-i(-x)-1i+4(i1i)-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.4.2.2
Raise i to the power of 1.
4i-x(1-i(-x)-1i+4(i1i1)-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.4.2.3
Use the power rule aman=am+n to combine exponents.
4i-x(1-i(-x)-1i+4i1+1-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.4.2.4
Add 1 and 1.
4i-x(1-i(-x)-1i+4i2-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
4i-x(1-i(-x)-1i+4i2-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
4i-x(1-i(-x)-1i+4i2-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.5
Simplify each term.
Tap for more steps...
Step 2.1.1.5.1
Rewrite -1i as -i.
4i-x(1-i(-x)-i+4i2-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.5.2
Rewrite i2 as -1.
4i-x(1-i(-x)-i+4-1-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.5.3
Multiply 4 by -1.
4i-x(1-i(-x)-i-4-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
4i-x(1-i(-x)-i-4-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.6
Reorder factors in i(-x)-i-4.
4i-x(1--ix-i-4-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.1.7
Reorder terms.
4i-x(1--ix-4-i-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
4i-x(1--ix-4-i-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.2
Write 1 as a fraction with a common denominator.
4i-x(-ix+1+2i-ix+1+2i--ix-4-i-ix+1+2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.3
Combine the numerators over the common denominator.
4i-x-ix+1+2i-(-ix-4-i)-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4
Simplify the numerator.
Tap for more steps...
Step 2.1.4.1
Apply the distributive property.
4i-x-ix+1+2i-(-ix)--4--i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.2
Simplify.
Tap for more steps...
Step 2.1.4.2.1
Multiply -(-ix).
Tap for more steps...
Step 2.1.4.2.1.1
Multiply -1 by -1.
4i-x-ix+1+2i+1(ix)--4--i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.2.1.2
Multiply x by 1.
4i-x-ix+1+2i+xi--4--i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
4i-x-ix+1+2i+xi--4--i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.2.2
Multiply -1 by -4.
4i-x-ix+1+2i+xi+4--i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.2.3
Multiply -1 by -1.
4i-x-ix+1+2i+xi+4+1i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
4i-x-ix+1+2i+xi+4+1i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.3
Multiply i by 1.
4i-x-ix+1+2i+xi+4+i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.4
Add -ix and xi.
Tap for more steps...
Step 2.1.4.4.1
Move i.
4i-x-1xi+xi+1+2i+4+i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.4.2
Add -1xi and xi.
4i-x0+1+2i+4+i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
4i-x0+1+2i+4+i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.5
Add 0 and 1.
4i-x1+2i+4+i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.6
Add 1 and 4.
4i-x5+2i+i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.4.7
Add 2i and i.
4i-x5+3i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
4i-x5+3i-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.1.5
Combine 5+3i-ix+1+2i and x.
4i-(5+3i)x-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
4i-(5+3i)x-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.2
To write 4i as a fraction with a common denominator, multiply by -ix+1+2i-ix+1+2i.
4i(-ix+1+2i)-ix+1+2i-(5+3i)x-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.3
Combine the numerators over the common denominator.
4i(-ix+1+2i)-(5+3i)x-ix+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.4
Factor -1 out of -ix.
4i(-ix+1+2i)-(5+3i)x-(ix)+1+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.5
Rewrite 1 as -1(-1).
4i(-ix+1+2i)-(5+3i)x-(ix)-1(-1)+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.6
Factor -1 out of -(ix)-1(-1).
4i(-ix+1+2i)-(5+3i)x-(ix-1)+2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.7
Factor -1 out of 2i.
4i(-ix+1+2i)-(5+3i)x-(ix-1)-(-2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.8
Factor -1 out of -(ix-1)-(-2i).
4i(-ix+1+2i)-(5+3i)x-(ix-1-2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.9
Rewrite negatives.
Tap for more steps...
Step 2.9.1
Rewrite -(ix-1-2i) as -1(ix-1-2i).
4i(-ix+1+2i)-(5+3i)x-1(ix-1-2i)=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.9.2
Move the negative in front of the fraction.
-4i(-ix+1+2i)-(5+3i)xix-1-2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 2.9.3
Reorder factors in -4i(-ix+1+2i)-(5+3i)xix-1-2i.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i1+2i-ix(i(2-i))+1
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i1+2i-ix(i(2-i))+1
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i1+2i-ix(i(2-i))+1
Step 3
Simplify -x-1+4i1+2i-ix(i(2-i))+1.
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
Reorder terms.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(i(2-i))+1
Step 3.1.2
Apply the distributive property.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(i2+i(-i))+1
Step 3.1.3
Move 2 to the left of i.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i+i(-i))+1
Step 3.1.4
Multiply i(-i).
Tap for more steps...
Step 3.1.4.1
Raise i to the power of 1.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i-(i1i))+1
Step 3.1.4.2
Raise i to the power of 1.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i-(i1i1))+1
Step 3.1.4.3
Use the power rule aman=am+n to combine exponents.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i-i1+1)+1
Step 3.1.4.4
Add 1 and 1.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i-i2)+1
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i-i2)+1
Step 3.1.5
Simplify each term.
Tap for more steps...
Step 3.1.5.1
Rewrite i2 as -1.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i--1)+1
Step 3.1.5.2
Multiply -1 by -1.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i+1)+1
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-x-1+4i-ix+1+2i(2i+1)+1
Step 3.1.6
Multiply -x-1+4i-ix+1+2i by 2i+1.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i+1
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i+1
Step 3.2
Simplify terms.
Tap for more steps...
Step 3.2.1
Write 1 as a fraction with a common denominator.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i+-ix+1+2i-ix+1+2i
Step 3.2.2
Combine the numerators over the common denominator.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i-ix+1+2i
Step 3.2.3
Factor -1 out of -ix.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i-(ix)+1+2i
Step 3.2.4
Rewrite 1 as -1(-1).
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i-(ix)-1(-1)+2i
Step 3.2.5
Factor -1 out of -(ix)-1(-1).
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i-(ix-1)+2i
Step 3.2.6
Factor -1 out of 2i.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i-(ix-1)-(-2i)
Step 3.2.7
Factor -1 out of -(ix-1)-(-2i).
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i-(ix-1-2i)
Step 3.2.8
Simplify the expression.
Tap for more steps...
Step 3.2.8.1
Rewrite -(ix-1-2i) as -1(ix-1-2i).
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=(-x-1+4i)(2i+1)-ix+1+2i-1(ix-1-2i)
Step 3.2.8.2
Move the negative in front of the fraction.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-(-x-1+4i)(2i+1)-ix+1+2iix-1-2i
Step 3.2.8.3
Reorder 2i and 1.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-(-x-1+4i)(1+2i)-ix+1+2iix-1-2i
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-(-x-1+4i)(1+2i)-ix+1+2iix-1-2i
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-(-x-1+4i)(1+2i)-ix+1+2iix-1-2i
-4i(-ix+1+2i)-x(5+3i)ix-1-2i=-(-x-1+4i)(1+2i)-ix+1+2iix-1-2i
Step 4
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 4.1
Add (-x-1+4i)(1+2i)-ix+1+2iix-1-2i to both sides of the equation.
-4i(-ix+1+2i)-x(5+3i)ix-1-2i+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.2
Combine the numerators over the common denominator.
-(4i(-ix+1+2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3
Simplify each term.
Tap for more steps...
Step 4.3.1
Simplify each term.
Tap for more steps...
Step 4.3.1.1
Apply the distributive property.
-(4i(-ix)+4i1+4i(2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2
Simplify.
Tap for more steps...
Step 4.3.1.2.1
Multiply 4i(-ix).
Tap for more steps...
Step 4.3.1.2.1.1
Multiply -1 by 4.
-(-4i(ix)+4i1+4i(2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.1.2
Raise i to the power of 1.
-(-4(i1i)x+4i1+4i(2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.1.3
Raise i to the power of 1.
-(-4(i1i1)x+4i1+4i(2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.1.4
Use the power rule aman=am+n to combine exponents.
-(-4i1+1x+4i1+4i(2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.1.5
Add 1 and 1.
-(-4i2x+4i1+4i(2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
-(-4i2x+4i1+4i(2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.2
Multiply 4 by 1.
-(-4i2x+4i+4i(2i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.3
Multiply 4i(2i).
Tap for more steps...
Step 4.3.1.2.3.1
Multiply 2 by 4.
-(-4i2x+4i+8ii-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.3.2
Raise i to the power of 1.
-(-4i2x+4i+8(i1i)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.3.3
Raise i to the power of 1.
-(-4i2x+4i+8(i1i1)-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.3.4
Use the power rule aman=am+n to combine exponents.
-(-4i2x+4i+8i1+1-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.2.3.5
Add 1 and 1.
-(-4i2x+4i+8i2-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
-(-4i2x+4i+8i2-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
-(-4i2x+4i+8i2-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.3
Simplify each term.
Tap for more steps...
Step 4.3.1.3.1
Rewrite i2 as -1.
-(-4-1x+4i+8i2-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.3.2
Multiply -4 by -1.
-(4x+4i+8i2-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.3.3
Rewrite i2 as -1.
-(4x+4i+8-1-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.3.4
Multiply 8 by -1.
-(4x+4i-8-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
-(4x+4i-8-x(5+3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.4
Apply the distributive property.
-(4x+4i-8-x5-x(3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.5
Multiply 5 by -1.
-(4x+4i-8-5x-x(3i))+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.1.6
Multiply 3 by -1.
-(4x+4i-8-5x-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
-(4x+4i-8-5x-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.2
Subtract 5x from 4x.
-(-x+4i-8-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.3
Apply the distributive property.
--x-(4i)--8-(-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.4
Simplify.
Tap for more steps...
Step 4.3.4.1
Multiply --x.
Tap for more steps...
Step 4.3.4.1.1
Multiply -1 by -1.
1x-(4i)--8-(-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.4.1.2
Multiply x by 1.
x-(4i)--8-(-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
x-(4i)--8-(-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.4.2
Multiply 4 by -1.
x-4i--8-(-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.4.3
Multiply -1 by -8.
x-4i+8-(-3xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.4.4
Multiply -3 by -1.
x-4i+8+3(xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
x-4i+8+3(xi)+(-x-1+4i)(1+2i)-ix+1+2iix-1-2i=0
Step 4.3.5
Expand (-x-1+4i)(1+2i) by multiplying each term in the first expression by each term in the second expression.
x-4i+8+3xi-x1-x(2i)-11-1(2i)+4i1+4i(2i)-ix+1+2iix-1-2i=0
Step 4.3.6
Simplify each term.
Tap for more steps...
Step 4.3.6.1
Multiply -1 by 1.
x-4i+8+3xi-x-x(2i)-11-1(2i)+4i1+4i(2i)-ix+1+2iix-1-2i=0
Step 4.3.6.2
Multiply 2 by -1.
x-4i+8+3xi-x-2xi-11-1(2i)+4i1+4i(2i)-ix+1+2iix-1-2i=0
Step 4.3.6.3
Multiply -1 by 1.
x-4i+8+3xi-x-2xi-1-1(2i)+4i1+4i(2i)-ix+1+2iix-1-2i=0
Step 4.3.6.4
Multiply 2 by -1.
x-4i+8+3xi-x-2xi-1-2i+4i1+4i(2i)-ix+1+2iix-1-2i=0
Step 4.3.6.5
Multiply 4 by 1.
x-4i+8+3xi-x-2xi-1-2i+4i+4i(2i)-ix+1+2iix-1-2i=0
Step 4.3.6.6
Multiply 4i(2i).
Tap for more steps...
Step 4.3.6.6.1
Multiply 2 by 4.
x-4i+8+3xi-x-2xi-1-2i+4i+8ii-ix+1+2iix-1-2i=0
Step 4.3.6.6.2
Raise i to the power of 1.
x-4i+8+3xi-x-2xi-1-2i+4i+8(i1i)-ix+1+2iix-1-2i=0
Step 4.3.6.6.3
Raise i to the power of 1.
x-4i+8+3xi-x-2xi-1-2i+4i+8(i1i1)-ix+1+2iix-1-2i=0
Step 4.3.6.6.4
Use the power rule aman=am+n to combine exponents.
x-4i+8+3xi-x-2xi-1-2i+4i+8i1+1-ix+1+2iix-1-2i=0
Step 4.3.6.6.5
Add 1 and 1.
x-4i+8+3xi-x-2xi-1-2i+4i+8i2-ix+1+2iix-1-2i=0
x-4i+8+3xi-x-2xi-1-2i+4i+8i2-ix+1+2iix-1-2i=0
Step 4.3.6.7
Rewrite i2 as -1.
x-4i+8+3xi-x-2xi-1-2i+4i+8-1-ix+1+2iix-1-2i=0
Step 4.3.6.8
Multiply 8 by -1.
x-4i+8+3xi-x-2xi-1-2i+4i-8-ix+1+2iix-1-2i=0
x-4i+8+3xi-x-2xi-1-2i+4i-8-ix+1+2iix-1-2i=0
Step 4.3.7
Subtract 8 from -1.
x-4i+8+3xi-x-2xi-9-2i+4i-ix+1+2iix-1-2i=0
Step 4.3.8
Add -2i and 4i.
x-4i+8+3xi-x-2xi-9+2i-ix+1+2iix-1-2i=0
x-4i+8+3xi-x-2xi-9+2i-ix+1+2iix-1-2i=0
Step 4.4
Combine the opposite terms in x-4i+8+3xi-x-2xi-9+2i-ix+1+2i.
Tap for more steps...
Step 4.4.1
Subtract x from x.
0-4i+8+3xi-2xi-9+2i-ix+1+2iix-1-2i=0
Step 4.4.2
Subtract 4i from 0.
-4i+8+3xi-2xi-9+2i-ix+1+2iix-1-2i=0
-4i+8+3xi-2xi-9+2i-ix+1+2iix-1-2i=0
Step 4.5
Add -4i and 2i.
8+3xi-2xi-9-2i-ix+1+2iix-1-2i=0
Step 4.6
Combine the opposite terms in 8+3xi-2xi-9-2i-ix+1+2i.
Tap for more steps...
Step 4.6.1
Add -2i and 2i.
8+3xi-2xi-9-ix+1+0ix-1-2i=0
Step 4.6.2
Add 8+3xi-2xi-9-ix+1 and 0.
8+3xi-2xi-9-ix+1ix-1-2i=0
8+3xi-2xi-9-ix+1ix-1-2i=0
Step 4.7
Subtract 9 from 8.
3xi-2xi-1-ix+1ix-1-2i=0
Step 4.8
Combine the opposite terms in 3xi-2xi-1-ix+1.
Tap for more steps...
Step 4.8.1
Add -1 and 1.
3xi-2xi-ix+0ix-1-2i=0
Step 4.8.2
Add 3xi-2xi-ix and 0.
3xi-2xi-ixix-1-2i=0
3xi-2xi-ixix-1-2i=0
Step 4.9
Subtract 2xi from 3xi.
1xi-ixix-1-2i=0
Step 4.10
Multiply x by 1.
xi-ixix-1-2i=0
Step 4.11
Combine the opposite terms in xi-ix.
Tap for more steps...
Step 4.11.1
Reorder the factors in the terms xi and -ix.
ix-ixix-1-2i=0
Step 4.11.2
Subtract ix from ix.
0ix-1-2i=0
0ix-1-2i=0
Step 4.12
Divide 0 by ix-1-2i.
0=0
0=0
Step 5
Since 0=0, the equation will always be true.
Always true
 [x2  12  π  xdx ]