Finite Math Examples

Divide Using Synthetic Division (15a^4-5a^3+10)/(5a)
15a4-5a3+105a
Step 1
Divide each term in the denominator by 5 to make the coefficient of linear factor variable 1.
1515a4-5a3+10a
Step 2
Place the numbers representing the divisor and the dividend into a division-like configuration.
015-50010
  
Step 3
The first number in the dividend (15) is put into the first position of the result area (below the horizontal line).
015-50010
  
15
Step 4
Multiply the newest entry in the result (15) by the divisor (0) and place the result of (0) under the next term in the dividend (-5).
015-50010
 0 
15
Step 5
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
015-50010
 0 
15-5
Step 6
Multiply the newest entry in the result (-5) by the divisor (0) and place the result of (0) under the next term in the dividend (0).
015-50010
 00 
15-5
Step 7
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
015-50010
 00 
15-50
Step 8
Multiply the newest entry in the result (0) by the divisor (0) and place the result of (0) under the next term in the dividend (0).
015-50010
 000 
15-50
Step 9
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
015-50010
 000 
15-500
Step 10
Multiply the newest entry in the result (0) by the divisor (0) and place the result of (0) under the next term in the dividend (10).
015-50010
 0000
15-500
Step 11
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
015-50010
 0000
15-50010
Step 12
All numbers except the last become the coefficients of the quotient polynomial. The last value in the result line is the remainder.
(15)(15a3+-5a2+(0)a+0+10a)
Step 13
Simplify the quotient polynomial.
(15)(15a3-5a2+10a)
Step 14
Simplify.
Tap for more steps...
Step 14.1
Distribute.
Tap for more steps...
Step 14.1.1
Apply the distributive property.
15(15a3-5a2)+1510a
Step 14.1.2
Apply the distributive property.
15(15a3)+15(-5a2)+1510a
15(15a3)+15(-5a2)+1510a
Step 14.2
Cancel the common factor of 5.
Tap for more steps...
Step 14.2.1
Factor 5 out of 15a3.
15(5(3a3))+15(-5a2)+1510a
Step 14.2.2
Cancel the common factor.
15(5(3a3))+15(-5a2)+1510a
Step 14.2.3
Rewrite the expression.
3a3+15(-5a2)+1510a
3a3+15(-5a2)+1510a
Step 14.3
Cancel the common factor of 5.
Tap for more steps...
Step 14.3.1
Factor 5 out of -5a2.
3a3+15(5(-a2))+1510a
Step 14.3.2
Cancel the common factor.
3a3+15(5(-a2))+1510a
Step 14.3.3
Rewrite the expression.
3a3-a2+1510a
3a3-a2+1510a
Step 14.4
Cancel the common factor of 5.
Tap for more steps...
Step 14.4.1
Factor 5 out of 10.
3a3-a2+155(2)a
Step 14.4.2
Cancel the common factor.
3a3-a2+1552a
Step 14.4.3
Rewrite the expression.
3a3-a2+2a
3a3-a2+2a
3a3-a2+2a
 [x2  12  π  xdx ]