Finite Math Examples

Divide Using Long Polynomial Division (3x^3-8x^2+x-1)/(x-5)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
--+-
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
--+-
Step 3
Multiply the new quotient term by the divisor.
--+-
+-
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
--+-
-+
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--+-
-+
+
Step 6
Pull the next terms from the original dividend down into the current dividend.
--+-
-+
++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+
--+-
-+
++
Step 8
Multiply the new quotient term by the divisor.
+
--+-
-+
++
+-
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+
--+-
-+
++
-+
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
--+-
-+
++
-+
+
Step 11
Pull the next terms from the original dividend down into the current dividend.
+
--+-
-+
++
-+
+-
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
++
--+-
-+
++
-+
+-
Step 13
Multiply the new quotient term by the divisor.
++
--+-
-+
++
-+
+-
+-
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
++
--+-
-+
++
-+
+-
-+
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++
--+-
-+
++
-+
+-
-+
+
Step 16
The final answer is the quotient plus the remainder over the divisor.