Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Factor out of .
Step 1.2
Factor out of .
Step 1.3
Factor out of .
Step 1.4
Factor out of .
Step 1.5
Factor out of .
Step 2
Step 2.1
Divide each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of .
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Divide by .
Step 2.3
Simplify the right side.
Step 2.3.1
Divide by .
Step 3
Use the quadratic formula to find the solutions.
Step 4
Substitute the values , , and into the quadratic formula and solve for .
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise to the power of .
Step 5.1.2
Multiply .
Step 5.1.2.1
Multiply by .
Step 5.1.2.2
Multiply by .
Step 5.1.3
Subtract from .
Step 5.1.4
Rewrite as .
Step 5.1.5
Rewrite as .
Step 5.1.6
Rewrite as .
Step 5.1.7
Rewrite as .
Step 5.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 5.1.9
Move to the left of .
Step 5.2
Multiply by .
Step 5.3
Simplify .
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Raise to the power of .
Step 6.1.2
Multiply .
Step 6.1.2.1
Multiply by .
Step 6.1.2.2
Multiply by .
Step 6.1.3
Subtract from .
Step 6.1.4
Rewrite as .
Step 6.1.5
Rewrite as .
Step 6.1.6
Rewrite as .
Step 6.1.7
Rewrite as .
Step 6.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 6.1.9
Move to the left of .
Step 6.2
Multiply by .
Step 6.3
Simplify .
Step 6.4
Change the to .
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Raise to the power of .
Step 7.1.2
Multiply .
Step 7.1.2.1
Multiply by .
Step 7.1.2.2
Multiply by .
Step 7.1.3
Subtract from .
Step 7.1.4
Rewrite as .
Step 7.1.5
Rewrite as .
Step 7.1.6
Rewrite as .
Step 7.1.7
Rewrite as .
Step 7.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 7.1.9
Move to the left of .
Step 7.2
Multiply by .
Step 7.3
Simplify .
Step 7.4
Change the to .
Step 8
The final answer is the combination of both solutions.