Enter a problem...
Finite Math Examples
y=e-x⋅ln(x)y=e−x⋅ln(x)
Step 1
Step 1.1
Find where the expression e-x⋅ln(x)e−x⋅ln(x) is undefined.
x≤0x≤0
Step 1.2
Since e-x⋅ln(x)e−x⋅ln(x)→→∞∞ as xx→→00 from the left and e-x⋅ln(x)e−x⋅ln(x)→→-∞−∞ as xx→→00 from the right, then x=0x=0 is a vertical asymptote.
x=0x=0
Step 1.3
Evaluate limx→∞e-xln(x)limx→∞e−xln(x) to find the horizontal asymptote.
Step 1.3.1
Rewrite e-xln(x)e−xln(x) as ln(x)exln(x)ex.
limx→∞ln(x)exlimx→∞ln(x)ex
Step 1.3.2
Apply L'Hospital's rule.
Step 1.3.2.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 1.3.2.1.1
Take the limit of the numerator and the limit of the denominator.
limx→∞ln(x)limx→∞exlimx→∞ln(x)limx→∞ex
Step 1.3.2.1.2
As log approaches infinity, the value goes to ∞∞.
∞limx→∞ex∞limx→∞ex
Step 1.3.2.1.3
Since the exponent xx approaches ∞∞, the quantity exex approaches ∞∞.
∞∞∞∞
Step 1.3.2.1.4
Infinity divided by infinity is undefined.
Undefined
∞∞∞∞
Step 1.3.2.2
Since ∞∞∞∞ is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
limx→∞ln(x)ex=limx→∞ddx[ln(x)]ddx[ex]limx→∞ln(x)ex=limx→∞ddx[ln(x)]ddx[ex]
Step 1.3.2.3
Find the derivative of the numerator and denominator.
Step 1.3.2.3.1
Differentiate the numerator and denominator.
limx→∞ddx[ln(x)]ddx[ex]limx→∞ddx[ln(x)]ddx[ex]
Step 1.3.2.3.2
The derivative of ln(x)ln(x) with respect to xx is 1x1x.
limx→∞1xddx[ex]limx→∞1xddx[ex]
Step 1.3.2.3.3
Differentiate using the Exponential Rule which states that ddx[ax]ddx[ax] is axln(a)axln(a) where aa=ee.
limx→∞1xexlimx→∞1xex
limx→∞1xexlimx→∞1xex
Step 1.3.2.4
Multiply the numerator by the reciprocal of the denominator.
limx→∞1x⋅1exlimx→∞1x⋅1ex
Step 1.3.2.5
Multiply 1x1x by 1ex1ex.
limx→∞1xexlimx→∞1xex
limx→∞1xexlimx→∞1xex
Step 1.3.3
Since its numerator approaches a real number while its denominator is unbounded, the fraction 1xex1xex approaches 00.
00
00
Step 1.4
List the horizontal asymptotes:
y=0y=0
Step 1.5
No oblique asymptotes are present for logarithmic and trigonometric functions.
No Oblique Asymptotes
Step 1.6
This is the set of all asymptotes.
Vertical Asymptotes: x=0x=0
Horizontal Asymptotes: y=0y=0
Vertical Asymptotes: x=0x=0
Horizontal Asymptotes: y=0y=0
Step 2
Step 2.1
Replace the variable xx with 11 in the expression.
f(1)=e-(1)⋅ln(1)f(1)=e−(1)⋅ln(1)
Step 2.2
Simplify the result.
Step 2.2.1
Multiply -1−1 by 11.
f(1)=e-1⋅ln(1)f(1)=e−1⋅ln(1)
Step 2.2.2
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
f(1)=1e⋅ln(1)f(1)=1e⋅ln(1)
Step 2.2.3
The natural logarithm of 11 is 00.
f(1)=1e⋅0f(1)=1e⋅0
Step 2.2.4
Multiply 1e1e by 00.
f(1)=0f(1)=0
Step 2.2.5
The final answer is 00.
00
00
Step 2.3
Convert 00 to decimal.
y=0y=0
y=0y=0
Step 3
Step 3.1
Replace the variable xx with 22 in the expression.
f(2)=e-(2)⋅ln(2)f(2)=e−(2)⋅ln(2)
Step 3.2
Simplify the result.
Step 3.2.1
Multiply -1−1 by 22.
f(2)=e-2⋅ln(2)f(2)=e−2⋅ln(2)
Step 3.2.2
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
f(2)=1e2⋅ln(2)f(2)=1e2⋅ln(2)
Step 3.2.3
Combine 1e21e2 and ln(2)ln(2).
f(2)=ln(2)e2f(2)=ln(2)e2
Step 3.2.4
The final answer is ln(2)e2ln(2)e2.
ln(2)e2ln(2)e2
ln(2)e2ln(2)e2
Step 3.3
Convert ln(2)e2ln(2)e2 to decimal.
y=0.09380727y=0.09380727
y=0.09380727y=0.09380727
Step 4
Step 4.1
Replace the variable xx with 33 in the expression.
f(3)=e-(3)⋅ln(3)f(3)=e−(3)⋅ln(3)
Step 4.2
Simplify the result.
Step 4.2.1
Multiply -1 by 3.
f(3)=e-3⋅ln(3)
Step 4.2.2
Rewrite the expression using the negative exponent rule b-n=1bn.
f(3)=1e3⋅ln(3)
Step 4.2.3
Combine 1e3 and ln(3).
f(3)=ln(3)e3
Step 4.2.4
The final answer is ln(3)e3.
ln(3)e3
ln(3)e3
Step 4.3
Convert ln(3)e3 to decimal.
y=0.05469668
y=0.05469668
Step 5
The log function can be graphed using the vertical asymptote at x=0 and the points (1,0),(2,0.09380727),(3,0.05469668).
Vertical Asymptote: x=0
xy1020.09430.055
Step 6