Finite Math Examples

Solve for x x^2+(p+1)x+2p-1=0
x2+(p+1)x+2p-1=0
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Apply the distributive property.
x2+px+1x+2p-1=0
Step 1.2
Multiply x by 1.
x2+px+x+2p-1=0
x2+px+x+2p-1=0
Step 2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 3
Substitute the values a=1, b=p+1, and c=2p-1 into the quadratic formula and solve for x.
-(p+1)±(p+1)2-4(1(2p-1))21
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
x=-p-11±(p+1)2-41(2p-1)21
Step 4.1.2
Multiply -1 by 1.
x=-p-1±(p+1)2-41(2p-1)21
Step 4.1.3
Rewrite (p+1)2 as (p+1)(p+1).
x=-p-1±(p+1)(p+1)-41(2p-1)21
Step 4.1.4
Expand (p+1)(p+1) using the FOIL Method.
Tap for more steps...
Step 4.1.4.1
Apply the distributive property.
x=-p-1±p(p+1)+1(p+1)-41(2p-1)21
Step 4.1.4.2
Apply the distributive property.
x=-p-1±pp+p1+1(p+1)-41(2p-1)21
Step 4.1.4.3
Apply the distributive property.
x=-p-1±pp+p1+1p+11-41(2p-1)21
x=-p-1±pp+p1+1p+11-41(2p-1)21
Step 4.1.5
Simplify and combine like terms.
Tap for more steps...
Step 4.1.5.1
Simplify each term.
Tap for more steps...
Step 4.1.5.1.1
Multiply p by p.
x=-p-1±p2+p1+1p+11-41(2p-1)21
Step 4.1.5.1.2
Multiply p by 1.
x=-p-1±p2+p+1p+11-41(2p-1)21
Step 4.1.5.1.3
Multiply p by 1.
x=-p-1±p2+p+p+11-41(2p-1)21
Step 4.1.5.1.4
Multiply 1 by 1.
x=-p-1±p2+p+p+1-41(2p-1)21
x=-p-1±p2+p+p+1-41(2p-1)21
Step 4.1.5.2
Add p and p.
x=-p-1±p2+2p+1-41(2p-1)21
x=-p-1±p2+2p+1-41(2p-1)21
Step 4.1.6
Multiply -4 by 1.
x=-p-1±p2+2p+1-4(2p-1)21
Step 4.1.7
Apply the distributive property.
x=-p-1±p2+2p+1-4(2p)-4-121
Step 4.1.8
Multiply 2 by -4.
x=-p-1±p2+2p+1-8p-4-121
Step 4.1.9
Multiply -4 by -1.
x=-p-1±p2+2p+1-8p+421
Step 4.1.10
Subtract 8p from 2p.
x=-p-1±p2-6p+1+421
Step 4.1.11
Add 1 and 4.
x=-p-1±p2-6p+521
Step 4.1.12
Factor p2-6p+5 using the AC method.
Tap for more steps...
Step 4.1.12.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 5 and whose sum is -6.
-5,-1
Step 4.1.12.2
Write the factored form using these integers.
x=-p-1±(p-5)(p-1)21
x=-p-1±(p-5)(p-1)21
x=-p-1±(p-5)(p-1)21
Step 4.2
Multiply 2 by 1.
x=-p-1±(p-5)(p-1)2
x=-p-1±(p-5)(p-1)2
Step 5
The final answer is the combination of both solutions.
x=-p+1-(p-5)(p-1)2
x=-p+1+(p-5)(p-1)2
 [x2  12  π  xdx ]